APPENDIX E Stormwater Assessment

NZTA

BRYNDERWYNS HILLS RECOVERY WORKS BRYNDERWYNS RP11.46 TO 13.79 STORMWATER DESIGN REPORT

27 JUNE 2024

PUBLIC

wsp

BRYNDERWYNS HILLS RECOVERY WORKS

BRYNDERWYNS SPANNING FROM RP11.46 TO 13.79 STORMWATER DESIGN REPORT

NZTA

WSP Whangarei Mansfield Terrace Service Lane 125A Bank Street, Whangarei,0110, New Zealand +64 93048078 wsp.com/nz

REV	DATE	DESIGN GATE	DETAILS
A	27/06/2024	90%	Issued to client – awaiting final fish passage assessment appendix

	NAME	DATE	SIGNATURE
Prepared by:	Vani Liu, Suma Rudrappa	27/06/2024	V.L
Reviewed by:	Mat Chiaroni	27/06/2024	Ille -
Approved by:	Friso Roest	27/06/2024	R

This report ('Report') has been prepared by WSP New Zealand Limited ('WSP') exclusively for Waka Kotahi ('Client') in relation to Brynderwyns Spanning from RP11.46 TO 13.79 Stormwater Design Report ('Purpose') and in accordance with the Contract Number PS -8897 SH1 Brynderwyn Hills -Design Services made on the 28th day of June 2023. The findings in this Report are based on and are subject to the assumptions specified in the Report and Design Philosophy Statement on 29th September 2023. WSP accepts no liability whatsoever for any use or reliance on this Report, in whole or in part, for any purpose other than the Purpose or for any use or reliance on this Report by any third party. In preparing this Report, WSP has relied upon data, surveys, analyses, designs, plans and other information ('Client Data') provided by or on behalf of the Client. Except as otherwise stated in this Report, WSP has not verified the accuracy or completeness of the Client Data.

vsp

TABLE OF CONTENTS

1	PROJECT BACKGROUND	1
1.1	INTRODUCTION AND PURPOSE	1
1.2	SITE DESCRIPTION	1
2	STORMWATER DESIGN	3
2.1	GENERAL	3
2.2	DESIGN GUIDELINES, SPECIFICATIONS AND STANDARDS	3
2.3	DESIGN ELEMENTS	4
2.4	DEPARTURES	6
2.5	EXISTING STORMWATER INFRASTRUCTURE AND EXISTING CULVERT CONDITION	8
2.5.1 2.5.2	EXISTING STORMWTAER INFRASTRUCTURE EXISTING CULVERTS CONDITION	
2.6	ASSUMPTION AND CONSIDERATIONS	10
2.6.1 2.6.2 2.6.3	RAINFALL AND CLIMATE CHANGE TIME OF CONCENTRATION (TC) RUNOFF CO-EFFICIENT	11
2.7	HYDROLOGY & HYDRAULIC ASSESSMENT	15
2.7.1 2.7.2	CATCHMENT AREA RECOMMENDATION	
2.8	FISH PASSAGE	21
2.9	STRUCTURAL ASSESSMENT	21
2.10	OUTLET PROTECTION	22
2.11	ROAD DRAINAGE SYSTEM	22
2.11.1	UPSLOPE	22
2.12	CULVERT ABANDONMENT	26
2.13	SECONDARY FLOW PATHS	26
2.14	GEOTECHNICAL CONDITIONS	26
2.15	SITE DRAWINGS	26
3	SITE SPECIFIC STORMWATER DESIGN	27
3.1	RMA CONSENTING REQUIREMENTS	27
3.1.1 3.1.2	PROPOSED REGIONAL PLAN FOR NORTHLAND WK-OIC REQUIREMENTS	

vsp

3.2	FILL SITE A	28
3.2.1 3.2.2 3.2.3	GENERAL HYDRAULIC ASSESSMENT PIPE WORK AND SURFACE DRAINAGE	.29
3.2.3 3.2.4 3.2.5	OUTLET WORKS	.29
3.3	FILL SITE B	30
3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	GENERAL HYDRAULIC ASSESSMENT NEW AND EXISTING PIPE WORK OUTLET WORKS INLET	31 31 31
3.4	GULLY C	. 31
3.4.1 3.4.2 3.4.3	GENERAL HYDRAULIC ASSESSMENT PIPE WORK AND SURFACE DRAINAGE	. 32
3.5	GULLY D	33
3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	GENERAL	. 33 . 33 . 34
3.6	SITE E	34
3.6.1 3.6.2 3.6.3	GENERAL HYDRAULIC ASSESSMENT PIPE WORK AND SURFACE DRAINAGE	. 35
3.7	GULLY F	35
3.7.1 3.7.2 3.7.3	GENERAL HYDRAULIC ASSESSMENT PIPE WORK AND SURFACE DRAINAGE	.36
3.8	GULLY G	37
3.8.1 3.8.2 3.8.3	GENERAL HYDRAULIC ASSESSMENT PIPE WORK AND SURFACE DRAINAGE	. 37
3.9	GULLY H	39

WSP 27 June 2024 ii

1-11264.01 Brynderwyns Hills Recovery Works Brynderwyns Spanning from RP11.46 to 13.79 Stormwater Design Report NZTA

vsp

3.9.1	GENERAL	
3.9.2	HYDRAULIC ASSESSMENT	
3.9.3	PIPE WORK AND SURFACE DRAINAGE	40
3.10	GULLY I	
3.10.1	GENERAL	40
3.10.2	HYDRAULIC ASSESSMENT	40
3.10.3	NEW AND EXISTING PIPE WORK	41
3.11	GULLY J	41
3.11.1	GENERAL	41
3.11.2	HYDRAULIC ASSESSMENT	42
3.11.3	PIPE WORK AND SURFACE DRAINAGE	42
4	LIMITATIONS	43
ADDE	NDIX A – EXISTING CULVERTS CONDITION	
	ASSESSMENT MEMO	II
APPE	NDIX B – ECOLOGY REPORT (FISH PASSAGE).	
	NDIX C – HYDROLOGY AND HYDRAULIC	
	CALCULATIONS	N/
		IV
APPE	NDIX D - CONSTRUCTION DRAWINGS	V
APPE	NDIX E – CATCHMENT MEASUREMENT	
	AREAS	
APPE	NDIX F – STRUCTURAL CALCS	VII

WSP 27 June 2024 iii

1 PROJECT BACKGROUND

1.1 Introduction And Purpose

New Zealand Transport Agency Waka Kotahi (NZTA) engaged WSP New Zealand (WSP) to deliver a comprehensive design for recovery widening work on the south side of the Brynderwyn Hill spanning from RP 11.46 to 13.79. The scope of work encompasses geotechnical design of cut slopes, retaining wall design/retrofit, stormwater design, road design, and obtaining resource consent.

This document is the Design Report for stormwater design and improvement work.

1.2 SITE DESCRIPTION

The Brynderwyn Hill south section comprises approximately 2.5 km of typically two-lane road carriageway traversing steep terrain. The southbound lane (toward Auckland) is on the upslope side of the formation and the northbound lane (toward Whangarei) is on the downslope side.

The alignment is typically cut into the hillside with steep upslope batters. The alignment crosses several deep (filled) gullies. The slope of the terrain above the road is typically 2:1 with some areas as steep as 1.25:1. The ground cover is dense native bush with deep litter. The soil type typically comprises clayey silt residual soils overlying weathered greywacke.

Runoff from the larger upstream catchments is conveyed downslope over SH1 via culverts in the base of the filled gullies.

Those culvert inlets typically comprise projecting culvert ends (i.e. no headwall or inlet structure) and are prone to blockage.

The entire site is considered geotechnically 'at risk' – refer to the separate geotechnical report.

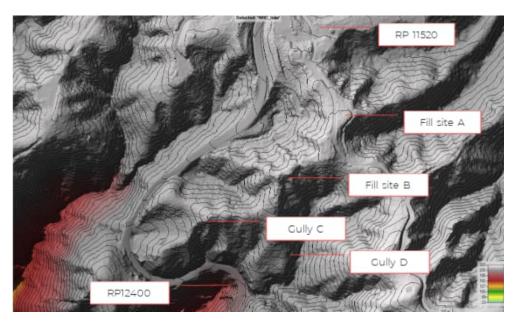


Figure 1-1: Gullies A–D, 5 m contours

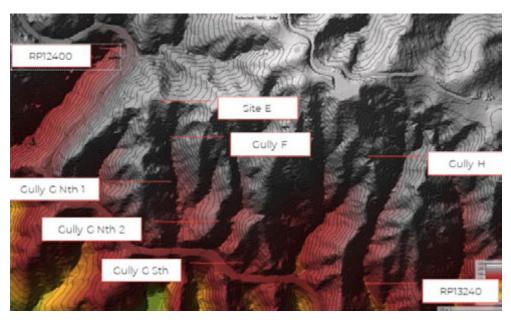


Figure 1-2: Gullies E–H, 5m contours

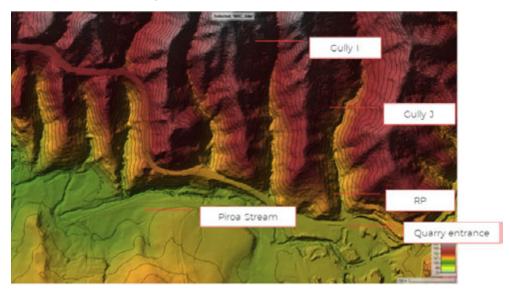


Figure 1-3: Gullies I, J, 5 m contours.

Depending on superelevation, road runoff is collected in concrete lined drains at the toe of the cut slopes and conveyed to the gullies or collected in kerb and channel and discharged downslope.

Some gully culvert outfalls discharge downslope a long way from the road. There is a lower geotechnical risk to the road, associated with those outfalls.

Minor culverts and road outfalls that discharge near the top of the slope pose a higher risk to the road from saturation or erosion of downslope fill embankment or in-situ material.

From Australian Rainfall & Runoff Blockage guidelines 2015, the site has HIGH debris availability (Table 1), HIGH debris mobility (Table 2) and MEDIUM debris transportability (Table 3), giving an overall debris potential of HIGH.

Access to upslope gullies and downslope outfalls is typically constrained by steep topography, bush cover, and ecology (species, fresh water).

2 STORMWATER DESIGN

2.1 GENERAL

The design philosophy for cross drainage servicing the upper catchments is to extend the existing cross culverts to accommodate the widened road formation. New inlets are to be constructed with improved resilience against blockage from debris. Existing road surface drainage cross culverts were be extended where practicable or renewed / replaced (e.g., where depth to cover under the widened road formation is compromised, or condition warrants replacement).

Additional capacity will be provided to align with current design standards, where this is practical (i.e. where the culvert is to be replaced). The design philosophy for road surface drainage is to minimise flow depths/flow encroachment into traffic lanes and increase resilience against blockage. Flows bypassing surface drainage inlets will be directed to the gully culverts.

Where headwater behind road fill embankments can affect stability, a secondary flow system (i.e. a high-flow bypass) will be installed in those locations. Stormwater discharges will be conveyed downslope in pipe flumes as far as practicable to minimise under slip risk (coordinating with geotechnical engineers). Runoff from slope batters will be collected in bench drains or toe drains and directed to the gully culverts, otherwise conveyed downslope via new or existing cross culverts. Road drainage and embankment runoff will be combined in concrete lined channels. New subsoil drains will be constructed within the widened road formation and will typically discharge to the downstream gullies.

2.2 DESIGN GUIDELINES, SPECIFICATIONS AND STANDARDS

The following design standards and guidelines are considered:

- NIWA, High Intensity Rainfall Design System (HIRDS), Version 4.
- NZTA P46 Stormwater Specification.
- Hydraulic Engineering Circular No.11 (HEC-11), Use of Riprap for Bank Protection, FHWA
- HydroCAD Software for integrated hydrologic and hydraulic design.
- NZTA (2010), F3 Specification for Pipe Culvert Construction.
- Severe Weather Emergency Recovery (Waka Kotahi New Zealand Transport Agency) Order 2023 (WK-OiC).

2.3 DESIGN ELEMENTS

Table 2.1	Summary of required stormwater design elements
-----------	--

DESIGN ELEMENT	CRITERIA		
Time of	TC for impervious road surfaces=10	minutes	
concentration	TC for bush catchments calculated using a combination of Kerby and Kirpich methodologies.		
Runoff Coefficients	Per excerpt below (NZTA May 2010) – Coefficient varies with vegetation.		
		able 6-2 Coefficients "C" Values	
	Description of area	Runoff Coefficient "C"	
	Lawns		
	Sandy soil, flat (<2% slope)	0.10	
	Sandy soil, average (2-7%)	0.15	
	Sandy soil, steep (>7%)	0.20	
	Clay soil, flat (<2%)	0.17	
	Clay soil, average (2-7%)	0.22	
	Clay soil, steep (>7%)	0.35	
	Impervious surfaces Parks	0.95	
	Bush	0.25	
	Sandy soil, flat (<2%)	0.10	
	Sandy soil, average (2-7%)	0.15	
	Sandy soil, steep (>7%)	0.20	
	Clay soil, flat (<2%)	0.15	
	Clay soil, average (2-7%)	0.20	
	Clay soil, steep (>7%)	0.3	
Storm Frequency	Per excerpt below		
Factor Table 6-1 Rational Formula Runoff Coefficient Frequer			
	Recurrence intermval (yea		
	20	1.1	
	50	1.2	
	100	1.25	
	Note: the product of C _f times C shall not exceed 1		
Road drainage	The proposed road surface runoff collection system is kerb & channel/dish drain with recessed inlet (catchpits/scruffy dome/grated inlet/traversable wingwall).		
	100-year flows – 3.0 m clear width in live lane, maximum 100 mm depth in covered lane.		
	10-year flow (P46) shoulder flow mi	ust not encroach on traffic lanes.	
	Bypass flows (exceeding inlet capacity) will be conveyed (via the kerb & channel) to the existing cross culverts servicing the upstream bush		

DESIGN ELEMENT	CRITERIA	
	catchments (southbound lane), or to flume discharges downslope (northbound lane).	
Batter/Slope drainage	Slope erosion protection by vegetation / geocomposite as dictated by geotechnical conditions, coordinated with slope stability consultant.	
	Cutoff drains/diversion bunds above cut slopes where access permits.	
	Benches to be positively graded, with and soft bunding Bench drains where practicable (i.e., where an access bench is being constructed, a drain will be included).	
	Runoff collected at toe of slope in concrete lined drain (or similar) and discharged to gully culverts (separate from surface runoff).	
Stormwater	There are no stormwater treatment devices along the existing alignment.	
Treatment	Due to significant geotechnical & topographical constraints (very steep, unstable terrain), construction of stormwater treatment devices is impracticable.	
	No new stormwater treatment devices are proposed.	
Culvert sizing	The key requirements are:	
	Typical cross-road culverts:	
	 Convey the 10-year average recurrence interval (ARI) storm event flow without surcharge of the pipe, considering 2031-2050 climate change scenario. 	
	Gully Culverts	
	• Convey the 100-year ARI storm event flow, whilst anticipating surcharge, with a minimum 500 mm freeboard to the outer edge line level considering 2031-2050 climate change scenario.	
	 In discrete locations, include as an emergency bypass, an overflow pipe will be installed – see emergency bypass item below. 	
	Hydrology & Hydraulic calculations in HydroCAD(R) software using rational method.	
Debris Screen	Will typically comprise scruffy dome inlets or proprietary debris screens for headwall structures.	
	The inlets will be designed to allow the 10-year ARI design flow to enter the culvert a with 50% blockage of the open area.	
	The inlets will be designed to allow the 100-year ARI design flow to enter the culvert a with 20% blockage of the inlet area	
Emergency bypass	Due to high debris potential, gully culverts servicing upstream catchments will have two inlets (primary pipe inlet & scruffy dome manhole emergency inlet) to allow continued function if one inlet is completely blocked.	

DESIGN ELEMENT	CRITERIA
Open Drain Outlets	Designed to ensure adequate energy dissipation and erosion protection measures to protect the integrity of the unreinforced downslopes in accordance with HEC14. Where practicable.
Flumes	Flumes (piped) to convey stormwater discharge away from under slip risk areas.
Secondary flow (road surface runoff)	Ensure that there is an acceptable flow path with a secondary flow (bypass flows from surface drainage inlets). This will be provided to meet existing performance and provide improvements where practicable.
Fish Passage	Environmental DNA analysis has been completed to confirm species –Fish passage retrofits are proposed were required; refer to the fish passage assessment.
Fill Sites	Incorporation of design activities with Southern Skies supplied sedimentation pond design.
	Ensure that there is an acceptable flow path with a secondary flow (bypass flows from surface drainage inlets)

2.4 DEPARTURES

Due to the constrained nature of the sites and the accelerated recovery works programme, the departures summarised in Table 2-1 were required, so the proposed work could be completed within the physical recovery works window.

DISCIPLINE	EXPECTED DEPARTURE	DEPARTURE
General	Design Life	Replacement and/or a higher level of maintenance of deteriorating components may be required beyond 10 years. Lower adopted design events for seismic.
Stormwater	Design Life	Due to the nature of the works (emergency and short life); proposed solution deviations from design life standards will be discussed with NZTA and documented with reasoning.

 Table 2.2
 Summary of required stormwater departures

DISCIPLINE	EXPECTED DEPARTURE	DEPARTURE
Stormwater	Headwater Depth	Existing gully culverts when analysed using RCP 8.5 rainfall scenarios may exceed the maximum allowable headwater depth.
Stormwater	Headwater Depth	Road reticulation inlets may exceed the maximum allowable headwater depth.
Stormwater	Waka Kotahi P46 – 3b	Considering the expected service life of the road (10 years) a climate change adjustment for high-range temperature increases for 2031-2050 is proposed.
Stormwater	Waka Kotahi State Highway Geometric Design Manual – 7	Roadside slopes may exceed the required front and back slope requirements to maximise the capacity of roadside open drains and provide allow for debris accumulation.
Stormwater	Waka Kotahi P46 - 4b	Existing table drains have insufficient capacity for primary flow due to site constraints. Providing new inlets / culverts to reduce length of flow paths is considered outside of the scope of this project.
Stormwater	Waka Kotahi P46 - 7.1c	Culverts will be allowed to surcharge to within 200 mm of the road surface for a 100-year ARI flow and surcharge up to 200 mm above the pipe soffit for a 10- year ARI flow, where required due to site constraints.
Stormwater	Waka Kotahi P46 – 5.5f	Manholes will be placed in the shoulder of the trafficable lane to facilitate scruffy dome inlets at the existing culverts. The manholes will be buried.

DISCIPLINE	EXPECTED DEPARTURE	DEPARTURE
Stormwater	Waka Kotahi P46 – 9.2b	Redundant infrastructure – Abandoned Culverts are to be filled with cement/grout and not excavated to minimise disruption and costs.

2.5 EXISTING STORMWATER INFRASTRUCTURE AND EXISTING CULVERT CONDITION

2.5.1 EXISTING STORMWTAER INFRASTRUCTURE

The existing stormwater infrastructure at each gully are shown in the Table 2-3 below.

CULVERT NO.	SITE REFERENCE	LOCATION (RP)	ASSET	COMMENT
1	Gully A	11685	DN900	Sited within a proposed fill gully, there is a 112 meters Length, large diameter culvert constructed to a high standard circa 1990 mm, beneath an 8 m deep road fill embankment. Inlet headwall set back approximately 35 m from existing road edge. High capacity. Most of the pipe joints exhibit minor to medium cracking or spalling, indicating faults as per the CCTV inspection report on 16 th of February 2024 done by WINCAN.
2	Gully B	11846	DN375	Sited within a proposed fill gully. 72 meters length culvert is constructed beneath a 15 m deep road fill embankment. There is an existing manhole without inlet / debris protection that is prone to blockage and set back approximately 25 m from the existing road edge. Most of the pipe joints exhibit significant cracking, spalling, and deformation, indicating faults as per the CCTV inspection report on 16 th of February 2024 done by WINCAN. Existing inlet MH is sited within private property.

Table 2-3Existing Stormwater Cross Culverts by site

CULVERT NO.	SITE REFERENCE	LOCATION (RP)	ASSET	COMMENT
3	Gully C	12044	DN450	Projecting pipe inlet in hole prone to blockage. 32 meters existing pipeline was constructed beneath a 6 m deep road fill embankment Pipe assessed as poor condition in need of renewal/replacement.
				Most of the pipe joints exhibit minor to medium cracking or spalling, indicating faults as per the CCTV inspection report on 16 th of February 2024 done by WINCAN. Existing inlet MH is sited within private property.
5	Gully D	12264	DN630	New twin-wall HDPE culvert, scruffy dome inlet MH, outlet MH, and culvert flume constructed post cyclone Gabrielle (Feb 2023)
6	Gully D (waterfall)	12365	DN900	The existing DN900 pipe will be extended along the current alignment. Additionally, the existing grated LID (manhole) will be demolished, due to road widening
9	Gully F South	12760	DN375	Existing 375 mm pipeline with new inlet MH constructed post cyclone Gabrielle to mitigate blockage.
		12760	DN800	Existing DN710 SDR17 HDPE pipe installed by HDD as emergency bypass constructed post-cyclone Gabrielle (Feb 2023)
11	Gully G North-1	12840	DN500	The damaged section needs to be replaced at least, due to the result of incomplete CCTV inspection result. Replace existing alignment with new traversable wingwall inlet, 1050 junction manhole, and DN500 Euroflo SN16 culvert crossing per typical detail.
12	Gully G North - 2	12920	DN375	Existing DN375mm pipeline with new 1050 junction manhole to be buried 260mm below FL, replace existing alignment with traversable headwall inlet.

CULVERT NO.	SITE REFERENCE	LOCATION (RP)	ASSET	COMMENT
13	Gully G North - 3	12980	DN600	Extending the existing DN600 pipeline, replacing the existing MH with DN1050 Scruffy dome.
14	Gully G North - 4	13060	DN600	Replacing the existing grated lid with scruffy dome.
15	Gully G South	13140	DN530	Abandon in place and grout fill existing culvert, replace with new DN630 cross culvert, DN1200 scruffy dome RCMH at inlet, and DN1200 junction manhole at outlet.
16	Gully H	13220	DN600	Awaiting results of CCTV inspection as at 2024/06/19 to confirm scope of repair.
18	Gully J North	13580	DN1200	The existing pipe is in good condition shown in the CCTV inspection report. Good capacity.
19	Gully J South	13700	DN600	The existing pipeline is at good condition and as per the CCTV inspection report. Out down bank on private property.

2.5.2 EXISTING CULVERTS CONDITION

A CCTV survey was conducted to assess the current condition of existing culverts. The condition of culverts is assessed in detailed in Appendix A.

2.6 ASSUMPTION AND CONSIDERATIONS

2.6.1 RAINFALL AND CLIMATE CHANGE

The calculation of rainfall runoff is using HIRDS V4 RCP8.5 for 2031-2050. Table 2-4 shows the adopted intensity/ duration/ frequency values.

AEP	10 M	20 M	30 M	1 H
0.633	58.3	44.6	37.6	27.3
0.5	64.2	49.2	41.4	30.1
0.2	84.8	65	54.7	39.7
0.1	100	76.8	64.7	46.9
0.05	116	88.9	74.9	54.4
0.033	126	96.3	81.1	58.9
0.025	132	101	85.5	62.1
0.02	138	106	89	64.7
0.017	142	109	91.9	66.7
0.013	149	114	96.4	70
0.01	155	119	99.9	72.6
	0.633 0.5 0.2 0.1 0.05 0.033 0.025 0.02 0.017 0.013	0.633 58.3 0.5 64.2 0.2 84.8 0.1 100 0.05 116 0.033 126 0.025 132 0.02 138 0.017 142 0.013 149	0.633 58.3 44.6 0.5 64.2 49.2 0.2 84.8 65 0.1 100 76.8 0.05 116 88.9 0.033 126 96.3 0.025 132 101 0.021 142 109 0.017 149 114	0.633 58.3 44.6 37.6 0.5 64.2 49.2 41.4 0.2 84.8 65 54.7 0.1 100 76.8 64.7 0.05 116 88.9 74.9 0.033 126 96.3 81.1 0.025 132 101 85.5 0.021 142 109 91.9 0.017 142 114 96.4

Table 2-4: Design rainfall intensity (mm/hr) adjusted for climate change.

2.6.2 TIME OF CONCENTRATION (Tc)

The Tc used for impervious road surfaces = 10 minutes.

The Tc for bush catchments was calculated using a combination of Kerby and Kirpich methodologies and compared to the NZBC methodology. Gully banks in the upper areas are typically 100 m long with a slope of 50% with bush cover and deep litter. Gully reaches vary in length up to 500 m with slopes between 15% and 20%.

A 20-minute Tc was adopted for catchments with long reaches, and 15 minutes for catchments without significant reaches, based on the calculated Tc for the various catchments.

2.6.2.1 KERBY/KIRPICH FOR TC

1. Upper gully banks (Kerby method)

S=0.5

N=0.8

L=100

Kerby method Tt for upper gully reaches is typically 13 minutes.

				0.467
		[0.67 L N	1
Τt	=	1		1
		[sqrt(s)	1
whe				
Tt	T=	'ra	el time [minu/	tes]
L	=FI	ow	length [feet]	
N	=R	eta	ardance coeffi	icient (See table)
				flow path) [ft/ft]
The	K	erb	y method is fr	requently used in conjunction with the
			nethod.	
For	fur	the	er information	see Rousell et al. 2005, p.6.

Figure 2-1 Kerby equation

2. Gully reaches (Kirpich method)

Using the parameters as shown below:

S = 20%

k = 2.0 (general overland flow)

Table 2-5: Flow time for various reach lengths using Kirpich method.

CHANNEL LENGTH (M)	TC (MINUTES)
500	8.7 min
400	7.3 min
300	5.9 min
200	4.3 min
100	2.5 min

0.770 [L] 0.770 -0.385 It = K k | ----- | = K L S [sqrt(s)]

where:

Tt=Travel time [minutes] K=Units conversion factor (0.0078 US, 0.0195 Metric) k=Adjustment factor (See <u>table</u>) L=Channel flow length [ft] or [m] s=Land slope (along flow path) [ft/ft] of [m/m]

The Kirpich method is frequently used in conjunction with the Kerby method.

For further information see Rousell et al. 2005, p.7.

Figure 2-2: Kerby equation

2.6.2.2 NZBC E1 METHOD FOR TC

3. Upper gully banks using 2.3.2.

Using parameters

n = 0.1 L = 100

S = 50%

NZBC E1 calculation for overland flow time for the upper gully banks is typically 20 minutes.

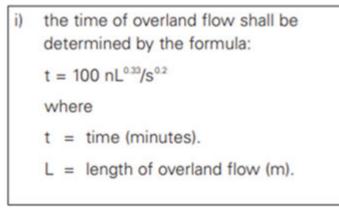


Figure 2-3: NZBC overland flow calculation.

4. Gully reaches using 2.3.6 shown in Figure 2-4 below.

Table 2-6: Using NZBC (which does not account for reach roughness)

CHANNEL LENGTH (M)	TC (MINUTES)
500	4.3
400	3.7
300	2.9
200	2.1
100	1.3

This equates to an average velocity of approx. 2 m/sec which is considered excessive when taking into account the dense ground cover/debris potential within the gullies and meandering stream paths.

2.3.6 Alternative method to determine time of concentration

Where there are significant changes in gradient along the channel slope or where the open channel is in a rural area, the time of concentration t_c may be determined from:

 $t_c = 0.0195 (L^3 / H)^{0.385}$

where

- t_c = time of concentration (minutes).
- L = length of catchment (m) measured along the flow path.
- H = rise from bottom to top of catchment (m).

Figure 2-4: 2.3.6 Alternative method to determine time of concentration.

If using the NZBC method, the Tc for all catchments, regardless of reach length is approximately 20 minutes (i.e. dictated by the relatively slow overland flow time within the upper gully reaches).

Using the Kerby, Kirpich method, the Tc for catchments varies between 15-20 minutes, depending on reach length.

2.6.3 RUNOFF CO-EFFICIENT

The runoff coefficients and event frequency factors from NZTA report Stormwater Treatment for State Highway Infrastructure (May 2010) were adopted. The NZTA Runoff coefficients are shown in Figure 2-5.

The bush catchments have been assessed as 'clay soil, steep (>7%)'. The NZTA recommended runoff coefficient is 0.3. A more conversative coefficient of 0.35 has been adopted for design to account for the very steep topography.

Table 6-1 Rational Formula Runoff Coefficient Frequency Factors							
Frequency factor (C _f)							
1.1							
1.2							
1.25							

Table 6-2 Rational Runoff Coefficients "C" Values							
Description of area	Runoff Coefficient "C"						
Lawns							
Sandy soil, flat (<2% slope)	0.10						
Sandy soil, average (2-7%)	0.15						
Sandy soil, steep (>7%)	0.20						
Clay soil, flat (<2%)	0.17						
Clay soil, average (2-7%)	0.22						
Clay soil, steep (>7%)	0.35						
Impervious surfaces	0.95						
Parks	0.25						
Bush							
Sandy soil, flat (<2%)	0.10						
Sandy soil, average (2-7%)	0.15						
Sandy soil, steep (>7%)	0.20						
Clay soil, flat (<2%)	0.15						
Clay soil, average (2-7%)	0.20						
Clay soil, steep (>7%)	0.3						

Figure 2-5: Runoff coefficients (NZTA)

2.7 HYDROLOGY & HYDRAULIC ASSESSMENT

The following hydraulic criteria were adopted.

 Convey the 100-year ARI storm event flow without surcharge of the pipe more than 2 m above the pipe soffit, and a minimum 200 mm freeboard from the peak water level to the outer edge line level for the MPD scenario.

Hydrology & Hydraulic calculations in HydroCAD(R) software and the rational method is used for peak flow calculation and results are tabulated in Table 2-8 and calculations are in Appendix C.

2.7.1 CATCHMENT AREA

The catchment areas for all existing cross culverts have been calculated using LiDAR data and incorporating the widened road formation. The results are presented in Table 2-7. Table 2-7: Catchment area

CULVERT NO.	CULVERT NAME	LOCATION	CATCHMENT ARE	/IENT AREA		
			ROAD (HA)	BUSH (HA)		
1	Gully A	11685	0.50	3.3		
2	Gully B	11846	0.10	2		
3	Gully C North	12044	0.30	1.3		
4	Gully C South	12160	0.15	0.05		
5	Gully D North	12264	0.13	0.87		
6	Gully D (Waterfall)	12365	0.00	9.1		

CULVERT NO.	CULVERT NAME	LOCATION	CATCHMENT AREA			
			ROAD (HA)	BUSH (HA)		
7	Gully E Roadside North	12420	0.00	0.3		
8	Gully E Roadside South	12480	0.04	0.2		
9	Gully F North	12560	0.04	0.3		
10	Gully F Existing	12760	0.30	2.3		
11	Gully G North - 1	12840	0.00	0.3		
12	Gully G North - 2	12920	0.10	0.5		
13	Gully G North - 3	12980	0.00	3.9		
14	Gully G North -4	13060	0.00	3.6		
15	Gully G South	13140	0.08	0.57		
16	Gully H	13220	0.13	6		
17	Gully I -RR	13400	0.05	0.6		
18	Gully J North	13580	0.20	8.7		
19	Gully J South	13700	0.00	8.6		
20	Gully J New	13755	ТВС			

Based on the existing culverts conditions and the calculation assessments, the hydraulic results are shown in table 2-8.

CULVERT	CULVERT NAME	LOCATION	CATCHME	ENT AREA	CULV	'ERT DIA (MM)	тс	PO SURVEY		P46 REQ	UIREMENT	Q100	0 2031-2050
NO.		_						1				HYDRO	CAD OUTPUTS
			ROAD (HA)	BUSH (HA	EXISTING CULVERT DIA (MM)	PROOSED CULVERT DIA (MM ID)	INLET INVERT (M)	ROAD LEVEL (M)	SLOPE	MAX. ALLOWED RL (HEADWATER DEPTH IN M)	MAX. ALLOWED RL (FREEBOARD IN M)	Q100 FLOW (M ³ /SEC)	Q100 PEAK HEADWATER RL
1	Gully A	11685	0.50	3.3	900	900	262.478	274.3	31%	265.38	273.8	0.62	263.06
2	Gully B	11846	0.10	2	450	450	246.79	259.71	6%	249.24	259.21	0.29	247.49
3	Gully C North	12044	0.30	1.3	450	450	238.85	241.95	7%	241.30	241.45	0.32	239.66
4	Gully C South	12160	0.15	0.05	N/A	500 (420)	232.55	232.55 233.41 5%		234.97	232.91	0.07	232.79
5	Gully D North	12264	0.13	0.87	525	525	224.5	226.35	9.54%	227.03	225.85	0.22	225.28
6	Gully D (Waterfall)	12365	0.00	9.1	900	900	216.3	218.87	1%	219.20	218.37	1.32	218.52
7	Gully E Roadside North	12420	0.00	0.3	375	500 (420)	212.22	214.56	5%	214.64	214.06	0.08	212.44
8	Gully E Roadside South	12440	0.04	0.2	375	500 (420)	207.96	208.59	2%	210.38	208.09	0.06	208.08
9	Gully F North	12560	0.04	0.3	375	500 (420)	201.12	202.04	3%	203.54	201.54	0.07	201.35
10	Gully F Existing	12760	0.30	2.3	800	800	179.53	185.71	0%	182.33	185.21	0.39	180.19
11	Gully G North - 1	12840	0.00	0.3	375	500 (420)	179.11	179.81	4%	181.53	179.31	0.06	179.31
12	Gully G North - 2	12920	0.10	0.5	375	375	171.59	173.1	6%	173.97	172.6	0.13	171.99
13	Gully G North - 3	12980	0.00	3.9	600	600	167.74	169.29	3%	170.34	168.79	0.36	168.28
14	Gully G North -4	13060	0.00	3.6	600	600	163.01	164.39	6%	165.61	163.89	0.58	163.70
15	Gully G South	13140	0.08	0.57	630	630 (525)	155.91	157.52	2%	158.44	157.02	0.12	156.16
16	Gully H	13220	0.13	6	600	600	141.67	146.63	11%	144.27	146.13	0.86	141.67
17	Gully I -RR	13400	0.05	0.6	375	500 (420)	140.58	141.45	1%	143.00	140.95	0.13	140.92
18	Gully J North	13580	0.20	8.7	1200	1200	122.156	127.49	13%	125.36	126.99	1.32	123.004
19	Gully J South	13700	0.00	8.6	600	600	114.95	118.57	4%	117.48	118.07	1.24	116.62
20	Gully J New (last)	13755	0.00	0.1	N/A	500 (420)	115.11	116.74	9%	117.53	116.24	0.02	115.22

Table 2-8: Hydraulic calculations of gully culverts

2.7.2 RECOMMENDATION

Refer to Table 2-9 about the recommendations, based on the hydraulic calculation's outcomes of the existing pipelines.

Table 2-9: Recommendations

CULVERT NO.	CULVERT NAME / FLUME NAME	LOCATION	RECOMMENDATIONS	MEETS THE RMA DEFINITION OF A 'RIVER'/'STREAM' (YES/NO
N/A	Outfall A1	11620	Install inlet MH and ≈ 40 m flume discharging to stable area below fill embankment	No
N/A	Outfall A2	11760	Install inlet MH and ≈ 50 m flume discharging to stable area below fill embankment	No
1	Gully A	11685	Raise inlet level (fill gully), CIPP line the existing culvert, as the size meet the hydraulic requirement, but shows signs of joint separation, and recommended burial depths for Class 2 concrete pipe is significantly exceeded.	Yes
2	Gully B	11846	Raise inlet level (fill gully), CIPP line the existing culvert, as the size meet the hydraulic requirement, but the culvert is significantly degraded.	No
3	Gully C North	12044	CIPP line the existing culvert, as the size meet the hydraulic requirement, but the culvert is significantly degraded. Extend pipe 6 m upstream to accommodate road widening.	Yes
4	Gully C South	12160	Construct a new ≈ 25 m long DN500 (ID420) SN16 cross culvert with a traversable inlet.	No
N/A	Outfall at C south		Install 1050Ø inlet MH and ≈ 20 m flume discharging downslope	No
5	Gully D North	12264	Preserve and extend existing culvert by ≈ 8 m, install new junction MH and new inlet MH	Yes

CULVERT NO.	CULVERT NAME / FLUME NAME	LOCATION	RECOMMENDATIONS	MEETS THE RMA DEFINITION OF A 'RIVER'/'STREAM' (YES/NO
6	Gully D (Waterfall)	12365	Preserve and extend existing culvert, by ≈ 5 m. move inlet position upstream to accommodate road widening.	Yes
7	Gully E Roadside North	12420	Construct a new ≈ 20 m long DN500 (ID420) SN16 cross culvert with a traversable inlet.	No
N/A	Outfall at E roadside north	12420	Construct a ≈ 15 m flume discharging downslope	No
8	Gully E Roadside South	12480	Construct a new ≈ 20 m long DN500 (ID420) SN16 cross culvert with a traversable inlet.	No
N/A	Outfall at gully E roadside south	12480	Construct a ≈ 15 m flume discharging downslope	No
9	Gully F North	12560	Construct a new ≈ 20 m long DN500 (ID420) SN16 cross culvert with a traversable inlet.	No
N/A	Outfall at gully F north	12560	Construct a ≈ 15 m flume discharging downslope	No
10	Gully F north	12680	Abandon existing culvert in place and grout fill – discharge location is contributing to instability below 'F'.	N/A - Abandoned
11	Gully F Existing	12760	CIPP line the existing culvert, as the size meet the hydraulic requirement, but the culvert is significantly degraded. Extend pipe upstream to accommodate road widening.	Yes
12	Gully G North - 1	12840	Excavate and remove the existing culvert. Replace the existing culvert (like for like) – poor condition, with a new traversable wingwall inlet, DN500 Eroflo SN16 culvert crossing the road to remedy limited cover, cracks, & misalignments.	No

CULVERT NO.	CULVERT NAME / FLUME NAME	LOCATION	RECOMMENDATIONS	MEETS THE RMA DEFINITION OF A 'RIVER'/'STREAM' (YES/NO
N/A	Outfall at gully G north	12840	Construct a ≈ 10 m flume discharging downslope	No
13	Gully G North - 2	12920	Preserve the existing culvert, as the size meet the hydraulic and structural requirement.	No
N/A	Outfall at gully G north 2	12920	Construct a ≈ 20 m flume discharging downslope	No
14	Gully G North - 3	12980	Preserve and extend the existing culvert ≈ 3 m, as the size meet the hydraulic and structural requirement.	Yes
15	Gully G North - 4	13060	Preserve the existing culvert, as the size meet the hydraulic and structural requirement.	Yes
16	Gully G South	13140	Excavate and remove existing 15 m long, 600 mm Ø culvert Constrauct a new ≈ 30 m long 600 mm Ø culvert	No
N/A	Outfall at Gully G south	13140	Install 1050Ø inlet MH and ≈ 15 m flume discharging downslope	No
17	Gully H	13220	CIPP line the existing culvert, as the size meet the hydraulic requirement, but the culvert is significantly degraded. Extend culvert upstream ≈ 6 m to accommodate road widening.	Yes
N/A	Outfall at Gully H	13350	Install 1050Ø inlet MH and ≈ 15 m flume discharging downslope	No
18	Gully I -RR	13400	Construct a new ≈ 25 m long DN 500 (ID 420) SN16 cross culvert with a traversable inlet.	No
N/A	Outfall at Gully I		Install 1050Ø inlet MH and ≈ 15 m flume discharging downslope	
19	Gully J North	13580	Retain the existing culvert meets the structural requirement.	Yes

CULVERT NO.	CULVERT NAME / FLUME NAME	LOCATION	RECOMMENDATIONS	MEETS THE RMA DEFINITION OF A 'RIVER'/'STREAM' (YES/NO
20	Gully J Middle	13630	Construct a new double superpit on the southern side of the road and a \approx 15 m flume to base of the slope.	No
21	Gully J South	13700	Install a new junction MH and extend the existing 600 mm culvert upstream Install a secondary overflow pipe.	Yes
22	Gully J Road reticulation	13755	Install ≈ 20 m long 420 mm ID cross culvert	No – road reticulation only

2.8 FISH PASSAGE

Fish Passage Assessment (Appendix B) has been prepared by the project ecologist. The purpose of the assessment is to determine the need to provide fish passage, based on ecological considerations.

For this project, fish passage retrofits are required for the following gully culverts based on ecological considerations:

- Culvert 6 (site D waterfall CH 12365
- Culvert 14 (site G north CH 12980)
- Culvert 17 (site H CH 13220)
- Culvert 19 (Site J north CH 13580)

Details of the retrofits are provided in the fish passage assessment.

2.9 STRUCTURAL ASSESSMENT

The preferred pipe material for replacing the existing stormwater pipe is polyethylene (PE). During detailed design, a structural assessment was completed for the flexible pipes (e.g., PE pipes) as per AS/NZS 2566.1 1998. This checked deflection, strain, buckling and combined loading. The pipes had a stiffness rating of 8,000 N/m/m (SN8) and a minimum strength of 10 MPa (PE100).

Pipes installed beneath the road pavement are SN16. Note that the results for trafficked areas are conservative; pipes installed beneath the road were SN16 as required by NZTA standards.

2.10 OUTLET PROTECTION

Scour protection is required at the culvert outlets, outlets from bench drains, and where road runoff discharges into the gullies, based on discussion with NZTA during the design phase, the agreed scour protection measures were:

- Culvert outlets: full pipe, corrugated Euroflo flumes with a rip-rap apron at their termination. The design was based on what is practical to install on site, rather than a specific scour protection standard. These are considered a cost-effective solution which can be installed relatively quickly on a variety of downstream slope condition.
- Kerb or bund termination: Riprap lined to distribute concentrated flow as sheet flow and dissipate energy.
- Surface water channel: Riprap lined and be sized to accommodate a 20-year ARI event, as per P46 requirements.

Where site constraints required an alternative scour protection, site specific information has been included below.

2.11 ROAD DRAINAGE SYSTEM

Subsoil drains were required to protect the pavement layer and road embankment from possible seepage. Subsoil drains were installed Beneath the surface water channel at the toe of all cut embankments. The subsoil drain comprises a 110 mmØ perforated drain coil in a 300 mm W x 600 mm D (below subgrade) geotextile wrapped trench backfilled with gap-graded drainage aggregate (20/14, 40/20 or similar.

The proposed road surface runoff collection system is kerb & channel for the northbound (downslope) lane, and a parabolic concrete channel for the southbound (upslope) lane.

Secondary 100-year flows require – 3.0 m clear width in live lane, and a maximum 100 mm depth in the covered lane.

Shoulder flow must not encroach on traffic lanes in a 10-year event (P46). Bypass flows will be conveyed (via the kerb & channel) to the existing cross culverts servicing the upstream bush catchments.

2.11.1 UPSLOPE

To capture flows from cut embankments and road runoff (where superelevation slopes into the hillside) we designed a standard parabolic channel of size 110 mm depth and 700mm width. Its capacity is checked against peak flow for 1 in 10-year and 100-year rainfall for the year 2031-2050 using HydroCAD software and the results are tabulated in Table 2-10 and calculations are appended in Appendix B.

Table 2-10: HYDRAULIC CALCULATIONS OF ROAD CHANNELS

CULVERT CULVERT NO. NAME		LOCATION	CATCHMENT AREA		CHANNEL SECTION			FROM HYDROCAD OUTPUT			FROM HYDROCAD OUTPUT			
NO.			ANLA	AKÉA					10 YEARS			100 YEARS		
			ROAD (HA)	CUT FACE (HA)	WIDTH (MM)	DEPTH (MM)	LENGTH (M)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M³/SEC)	AVG. FLOW DEPTH (M ³ /SEC)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M ³ /SEC)	AVG. FLOW DEPTH (M ³ /SEC)	
1	Gully A	11685	0.50	0.4	700	110	160	0.16	0.13	0.12	0.32	0.13	0.18	
2	Gully B	11846	0.10	0.1	700	110	63	0.03	0.2	0.05	0.067	0.2	0.06	
3	Gully C North	12034	0.30	0.08	700	110	129	0.07	0.21	0.07	0.14	0.21	0.09	
4	Gully C South	12160	0.15	0.05	700	110	81	0.04	0.1	0.07	0.07	0.1	0.1	
5	Gully D North	12264	0.10	0.13	700	110	100	0.03	0.23	0.05	0.07	0.23	0.06	
6	Gully D (waterfall)	12365	0.00	0.9	700	110	120	0.06	0.14	0.08	0.13	0.14	O.11	
7	Site E North	12420	0.05	0.3	700	110	42	0.03	0.07	0.08	0.06	0.07	0.1	
8	Site E South	12440	0.04	0.2	700	110	34	0.03	0.23	0.04	0.06	0.23	0.06	
9	Site F North	12560	0.05	0.3	700	110	66	0.03	0.19	0.05	0.07	0.19	0.07	

CULVERT NO.	CULVERT NAME	LOCATION	CATCHMENT AREA		CHANNEL SECTION			FROM HYDROCAD OUTPUT			FROM HYDROCAD OUTPUT		
NO.			AKEA					10 YEARS			100 YEARS		
			ROAD (HA)	CUT FACE (HA)	WIDTH (MM)	DEPTH (MM)	LENGTH (M)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M³/SEC)	AVG. FLOW DEPTH (M ³ /SEC)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M³/SEC)	AVG. FLOW DEPTH (M ³ /SEC)
10	Gully F Existing	12760	0.30	0.28	700	110	156	0.09	0.22	0.07	0.18	0.22	0.1
11	Gully G North-1	12840	0.00	0.3	700	110	76	0.03	0.16	0.05	0.05	0.16	0.06
12	Gully G North-2	12920	0.10	0.4	700	110	73	0.07	0.19	0.09	0.14	0.19	0.12
13	Gully G North-3	12980	0.00	0.1	700	110	51	0.05	0.24	0.02	0.01	0.24	0.02
14	Gully G North-4	13060	0.00	0.2	700	110	71	0.02	0.18	0.04	0.03	0.18	0.05
15	Gully G South	13140	0.08	0.24	700	110	90	0.05	0.16	0.06	0.07	0.16	0.08
16	Gully H	13220	0.00	0.06	700	110	64	0.01	0.16	0.02	0.01	0.16	0.03
17	Gully I - RR	13400	0.05	0.6	700	110	157	0.05	0.13	0.07	0.1	0.13	0.1
18	Gully J North	13580	0.20	0.1	700	110	N/A	0.05	0.19	0.06	0.08	0.19	0.08
19	Gully J South	13700	0.00	0.1	700	110	123	0.05	0.19	0.06	0.08	0.19	0.07

CULVERT CULVERT NO. NAME		LOCATION	CATCHMENT AREA		CHANNEL SECTION			FROM HYDROCAD OUTPUT			FROM HYDROCAD OUTPUT		
								10 YEARS			100 YEARS		
			ROAD (HA)	CUT FACE (HA)		DEPTH (MM)	LENGTH (M)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M³/SEC)	AVG. FLOW DEPTH (M ³ /SEC)	PEAK FLOW (M³/SEC)	CHN CAPACITY (M³/SEC)	AVG. FLOW DEPTH (M ³ /SEC)
20	Gully J New	13755	0.00	0.1	700	110	123	0.05	0.19	0.06	0.08	0.19	0.07

2.12 CULVERT ABANDONMENT

Existing culverts that were replaced or were no longer in service required abandonment. In these situations, existing pipes are either grout filled and abandoned in place or removed during construction as agreed with the Engineer.

Refer to Table 2-9 Recommendation.

2.13 SECONDARY FLOW PATHS

Failure of the slope below the road across the four slip sites has been associated with secondary flow paths overtopping the road and scouring the downstream slope. Therefore, additional emphasis during the design phase was placed on ensuring the resilience of the primary network and capacity of upgraded culverts.

In the event these stormwater assets are overwhelmed, an asphalt bund was constructed along the top of each wall to ensure that secondary flows are discharged at a controlled location.

2.14 GEOTECHNICAL CONDITIONS

The Brynderwyns Recovery Work Geotechnical Factual Report_Rev01 has been completed for the site. from the initial assessment, the following potential geotechnical risks have been identified with respect to the proposed concept options and these are considered and assessed in the detailed design:

- Potential for deep excavations in soils requiring temporary batter stabilisation. Shallower installation is preferable from a geotechnical risk perspective.

2.15 SITE DRAWINGS

The stormwater drawings are referenced for each site. These issued 'For Construction' drawings may differ from the details in this report, due to post-design amendments and stormwater infrastructure availability during the emergency works.

3 SITE SPECIFIC STORMWATER DESIGN

3.1 RMA CONSENTING REQUIREMENTS

3.1.1 PROPOSED REGIONAL PLAN FOR NORTHLAND

The Proposed Regional Plan for Northland (PRPN) sets out activities rules in relation to stormwater management and culverts. The following sets out the relevant rules that apply, including permitted activity provisions.

Proposed Reg	gional Plan for Northland (PRPN)							
Activity Rules		Activity status						
C.2.1.4	Replacement of a culvert in the bed of a river/ stream where the footprint is larger than the existing structure							
C.2.1.8	Placement or extension of a culvert in the bed of a river/ stream where the footprint is larger than the existing structure.	Controlled						
C.6.4.2	Other stormwater discharges							
	 Standards to be met for permitted activity status to apply: The diversion and discharge of stormwater into water or onto or into land where it may enter water from an impervious area or by way of a stormwater collection system, is a permitted activity, provided: The discharge or diversion is not form: A public stormwater network, or A high-risk industrial or trade premises, and The diversion and discharge does not cause or increase flooding of land on another property in a storm event of up to and including a 10 percent annual exceedance probability, or flooding of buildings on another property in a storm event of up to and including a one percent annual exceedance probability, and [Not applicable] The diversion or discharge is not into potentially contaminated land, or not potentially contaminated land that is not covered by an impervious area, and The diversion and discharge does not cause permanent scouring or erosion of the bed of a water body at the point of discharge, and The discharge does not cause any of the following effects in the receiving waters beyond the zone for reasonable mixing: The production of conspicuous oil or grease films, scums or foams, of floatable or suspended materials, or A conspicuous change in the colour or visual clarity, or 							

d)	The rendring of freshwater unsuitable for consumption by the farm animals, or	
e)	The rendering of freshwater taken from a mapped priority drinking water abstraction point (refer I Maps Nga mahere matawhenua) unsuitable for human consumption after existing treatment.	

For activities that require a consent, they will be sought from Northland Regional Council as part of a resource consent application for recovery works. The application will be prepared under the provisions of the WK-OiC.

3.1.2 WK-OIC REQUIREMENTS

The WK-OiC modifies the RMA to support recovery works along specific section of state highway. For resource consents granted under the provisions of the WK-OiC, the following conditional requirements will need to be complied with:

- 1. New land drains must be designed to accommodate the 20-year ARI flood flow event or other standard as applied to the specific drainage scheme affected and must include appropriate erosion control.
- 2. The consent holder must design nay new permanent culvert to ensure that any headwater ponding upstream of the culvert in the 100-year ARI rain event does not cause any significant adverse effect.

For this project, the above requirements will be...

3.2 FILL SITE A

3.2.1 GENERAL

The following drawings should be referred to for the Fill Site A stormwater detailed design:

1. 1-11264.01-WSP-SDDC-SA-DR-WA-4000

1-11264.01-WSP-SDDC-SA-DR-WA-4001

1-11264.01-WSP-SDDC-SA-DR-WA-4211

Groundwater levels at the Gully A are controlled by a drainage blanket (the existing drainage blanket below the road embankment was extended underneath the fill placed in the gully)

Fill site A is a 3.3 Ha bush catchment planted in pine which receives runoff from approximately 0.3 Ha of the outlet culvert is a DN900 mm RCRRJ culvert laid at approximately 23% gradient below the road embankment constructed circa 1990 with the inlet sited in the bottom of the gully. The inlet location was preserved with a 2050 inlet manhole & scruffy dome with additional risers placed as filling commenced >100,000 m³ of fill material has been placed uphill of the road embankment. The existing culvert is the only drainage outlet from the gully (there are no emergency overflows).

The culvert inlet is approximately 8 m below the road edge.

Figure 3-1: Gully A -5 m contours

3.2.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.2.3 PIPE WORK AND SURFACE DRAINAGE

On the north-eastern side of the road from CH 11480 to CH 11670.the existing roadside drainage will be preserved and discharge into a new rock-lined drain/swale discharging to the inlet to the 900 culverts (as per the current drainage regime).

There is a DN900 culvert at CH 11716 beneath a deep road fill embankment noted as being in poor condition as per the CCTV inspection report done on 24th February,2024. The inlet headwall is sited within the fill gully approximately 8 m below road level. Construction photos show the culvert is Class 2 with concrete bedding. The recommended burial depth for a class 2 pipe is exceeded beneath the road fill embankment and within the fill site.

Considering the burial depth and the criticality of the culvert, CIPP lining is recommended.

3.2.4 OUTLET WORKS

No modifications are proposed to the outfall of the 900 culverts.

On the western side of the road at CH 11620, a new DN1050 junction inlet manhole with a scruffy dome will be constructed with a concrete inlet apron. approximately 40 m of DN400 Euroflo pipe flume will convey flows to the gut of the gully below any potentially unstable areas.

At western side of SiteA south near CH11760, replacing the existing double catchpit with new 1050 inlet manhole with scruffy dome and concrete inlet apron will be sited behind the new pile retaining wall. Approximately 50 m of DN400 SN8 Euroflo pipe flume will convey flows to the base of the gully (below the fill embankment).

Rock armouring will be provided at the flume outlets. Rock size will be limited by what can be 'chuted' through the new pipe flume.

3.2.5 INLET

The existing inlet headwall for the culvert has been replaced with a new DN2050 inlet manhole. The manhole is linked to subsoil drains, positioned with a drainage blanket (refer geotechnical report) on its southern side. As the fill progresses, additional manhole risers are incorporated.

On the northern side, a DN100 subsoil drain wrapped in geotextile Nova Flo is installed within a trench. To aid clean water diversion, a temporary DN300 drain coil is affixed to the ground and removed at completion of the works.

3.3 FILL SITE B

3.3.1 GENERAL

The following drawings should be referred to for the Fill Site B stormwater detailed design:

1-11264.01-WSP-SDDC-SB-DR-WA-4000

1-11264.01-WSP-EWGL-GB-DR-WA-4211

1-11264.01-WSP-EWGL-GB-DR-WA-4212

Groundwater levels at fill site B are governed by the installed drainage blanket on the underside of the fill.

Fill site B is a 2 Ha bush catchment planted in pine which receives runoff from approximately 0.26 Ha catchment. The outlet culvert is a DN375 RCRRJ culvert laid at approximately 6 % gradient below the road embankment constructed circa 1990.

The culvert inlet is approximately 11 m below the road edge.

Figure 3-2: Gully B - 5 m contours

3.3.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.3.3 NEW AND EXISTING PIPE WORK

There is an existing DN375 Culvert at CH11846 that warrants replacement because of its poor condition, and the existing inlet is in the new extension area. Given these circumstances, the following action is warranted:

- 1. Rehabilitate the existing DN375 culvert at CH11846 with CIPP liner (relaying the culvert is not practical through the deep road fill embankment.
- 2. Extending the existing DN900 inlet manhole to suit fill level during construction by placing 1050 risers as fill progresses.
- 3. Installation of subsoil drains within the drainage blanket and underfill drains in geotextile wrapped trenches where practicable to collect groundwater flow.

A new concrete line channel will be constructed to connect with the existing channel from CH11786. Towards to the gully extension area, the concrete lined channel runs out into rock-lined drain to suit site, and discharge water to the inlet manhole.

3.3.4 OUTLET WORKS

The existing outlet structure is being maintained. Although the outlet was not found, the inlet and culvert are clear and in good condition, we assume that the outlet is also in good condition (as mentioned in RAMM).

3.3.5 INLET

Extend the existing DN900 manhole to suit the new fill site and to capture flows from the catchment area. An additional DN100 perforated subsoil drain wrapped with Class C Geotextile is installed in a trench. Installation of new drainage blanket is necessary to remove water or control groundwater seepage from the fill.

3.4 GULLY C

3.4.1 GENERAL

The following drawings should be referred to for the Gully Site C stormwater detailed design:

1. 1-11264.01-WSP-SDDC-SC-DR-WA-4000

1-11264.01-WSP-SDDC-SC-DR-WA-4211

1-11264.01-WSP-EWGL-GC-DR-WA-4212

Groundwater levels at the Gully Site C appear to be seasonal. Geotechnical investigations completed on November 28th, 2023.

Gully Site C is a 1.3 Ha bush catchment planted in pine which receives runoff from approximately 0.3 Ha of the outlet culvert is a DN450 RCRRJ culvert laid at approximately 6.26 % gradient below the road embankment constructed circa 1990.

The culvert inlet is approximately 11 m below the road edge.

Figure 3-3: Gully C - 5 m contours.

3.4.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.4.3 PIPE WORK AND SURFACE DRAINAGE

An existing DN450 culvert at CH12034 needs to be replaced due to its poor condition. As the manhole clashes with the new road edge location, it will need to be extended. Given these circumstances, the following action is warranted:

- 1. Rehabilitate the existing DN450 culvert at CH12034 with CIPP liner.
- 2. Extending the existing DN900 manhole to suit fill level during construction, additionally, it will be connected to a new DN1050 inlet manhole with scruffy dome. This connection will be facilitated using a DN500 Euroflo pipe.
- 3. A rock lined drain will be built on site and connected to the proposed embankment toe drain in the bush area. It will be discharging directly into the new DN1050 inlet manhole.
- 4. The concrete drain will discharge into the rock lined drain area and using 25 MPa cast in-situ concrete splay to change flow direction to the proposed manhole.

Installation of a new Euroflo DN500 culvert at CH12170, the culvert is designed using a Traversable Inlet structure to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. And a new DN1050 inlet scruffy dome manhole with concrete inlet apron will be installed at downstream western side of the road. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, three 8 mmØ 316SS cables are fastened along the entire length of the flume at the pipe joints. The Contractor to confirm the alignment of flume on site with the Engineer.

3.5 GULLY D

3.5.1 GENERAL

The following drawings should be referred to for the Gully Site D stormwater detailed design:

1. 1-11264.01-WSP-SDDC-SD-DR-WA-4000

1-11264.01-WSP-EWGL-GD-DR-WA-4212

Gully Extension D is a 2.1 Ha bush catchment planted in pine which receives runoff from approximately 0.5 Ha of the outlet culvert is a DN630 Euroflo laid at approximately 9.54 % gradient below the road embankment constructed circa 1990.

Figure 3-4: Gully D

3.5.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.5.3 NEW AND EXISITING PIPE WORK

There is an existing DN525 Euroflo culvert at CH12264 within the existing road, which has been replaced in November 2023, so the condition is acceptable, in order to suit the gully extension and road widen design, then it needs to be extended. It discharges immediately. So, the following action is warranted:

 The existing DN18000 manhole is slated for removal at the current location due to the clash with the proposed road edge. Concurrently, the existing DN630 Euroflo will undergo an extension at a designated location. This elongated DN630 Euroflo will then be linked to a new DN1500 junction manhole. Furthermore, the fate of the existing DN1800 inlet manhole hinges on its condition: if deemed satisfactory, it will be relocated; otherwise, a new manhole of identical dimensions will take its place.

- 2. The proposed concrete drain will discharge into the new rock lined drain area.
- 3. Open upstream end on dish channel with cast in-situ erosion protection apron.

A new DN1050 inlet scruffy dome manhole with concrete inlet apron will be installed downstream on the opposite side of the road. Additionally, to ensure stability of the existing flume treatment, two 5 mm 316 stainless steel [whats?] will be securely fastened along the entire length of the pipe at 500 mm intervals. Two 32 mm Reinforcement bar anchors and saddle restraint is to suit at end of the existing flume.

The functionality of an another existing DN900 culvert at CH12358 in Site D is retained based on the provided CCTV report. To align with the new design of the road, it will need to reconnect back to the network system, the following action is warranted:

- 1. Demolish the existing grated lid manhole, extending waterfall culvert along existing alignment.
- 2. Run out concrete lined channel into the waterfall pool, cast in-situ concrete ramp.
- 3. Open upstream end on dish channel with cast in-situ erosion protection apron

3.5.4 OUTLET WORKS

Outlet protection is not included in this detail design. The pipe discharges onto a steep rock face. However, the current existing catchpit at CH12368 will undergo an upgrade to a Double Superpit arrangement at the outlet.

3.5.5 INLET

The existing inlet DN1800 manhole (SDMH3) has been relocated and connected with a new DN1500 junction manhole. The new inlet location on the new gully extension site will be the local low point. A new drainage blanket has been installed, which is a 500 mm thick layer of 65/40 drainage metal wrapped in strength Class C geotextile, filtration Class 2. It connected to the manhole with DN100 Euroflo or equivalent approved pipe above the manhole outlet.

3.6 SITE E

3.6.1 GENERAL

The following drawings should be referred to for the Gully Site E stormwater detailed design:

1. 1-11264.01-WSP-SDDC-SE-DR-WA-4000

1-11264.01-WSP-SDDC-SE-DR-WA-4211

1-11264.01-WSP-SDDC-SE-DR-WA-4212

Gully Extension E is a 0.5 Ha bush catchment planted in pine, which receives runoff from approximately 0.09 Ha of the outlet culverts are two DN500 Euroflo laid at approximately 5 % and 2% gradient below the road embankment.

Figure 3-5: Gully E

3.6.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.6.3 PIPE WORK AND SURFACE DRAINAGE

Two new DN500 culverts at CH12420 and CH12440 are designed using a traversable Inlet structure to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. The water will be discharged from the traversable inlet into a new DN1050 buried inlet manhole.

The current catchpit of Culvert 12420 will undergo an upgrade to a Double Superpit arrangement at the outlet. Additionally, the outlet will feature a DN500 SN16 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, two 32 mm RB anchors will be installed.

A Double Superpit is installed at Culvert 12480 outlet as well.

Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment with pipe clamps discharged onto rock, its bottom is at the designed outfall location. To ensure stability, three 8 mmØ 316SS cables are fastened along the entire length of the flume at the pipe joints. The Contractor to confirm the alignment of flume on site with the Engineer.

Scour protection will be provided at the culvert extension outlets, with the rock size governed by pipe diameter.

3.7 GULLY F

3.7.1 GENERAL

The following drawings should be referred to for the Gully Site F stormwater detailed design:

1-11264.01-WSP-SDDC-SF-DR-WA-4000

1-11264.01-WSP-SDDC-SF-DR-WA-4211

Gully Extension F is a 2.6 Ha bush catchment planted in pine which receives runoff from approximately 0.35 Ha of the outlet culverts are two DN375 and DN800 laid at approximately 3% and 0% gradient below the road embankment.

Figure 3-6: Gully F

3.7.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C.

3.7.3 PIPE WORK AND SURFACE DRAINAGE

A new DN500 culvert at CH12560 is designed using a traversable Inlet structure to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. The water will be discharged from the traversable inlet into a new DN1050 buried inlet manhole The current catchpit of Culvert at CH12560 will undergo an upgrade to a Double Superpit arrangement at the outlet. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, three 8 mmØ 316SS cables are fastened along the entire length of the flume at the pipe joints and be fixed into retaining wall. Scour protection will be provided at the culvert extension outlets, with the rock size governed by pipe diameter.

Culvert 12760 needs to be constructed with precast wingwall in accordance with manufactures guidelines, and shape locally to form low point at new inlet. A stabilized earth bund is implemented at clean water diversion inlet, additionally the existing inlet pipe is to be abandoned in-place. The existing manhole is preserved and a new 1050 MH scruffy dome inlet manhole is utilized.

3.8 GULLY G

3.8.1 GENERAL

The following drawings should be referred to for the Gully Site G stormwater detailed design:

1-11264.01-WSP-EWGL-GN-DR-WA-4211
 1-11264.01-WSP-EWGL-GN-DR-WA-4212
 1-11264.01-WSP-EWGL-GN-DR-WA-4213
 1-11264.01-WSP-EWGL-GS-DR-WA-4211
 1-11264.01-WSP-EWGL-GS-DR-WA-4212
 1-11264.01-WSP-SDDC-SG-DR-WA-4000
 1-11264.01-WSP-SDDC-SG-DR-WA-4211

Gully Extension G is an 8.7 Ha bush catchment planted in pine which receives runoff from approximately 0.18 Ha of the outlet culverts are five pipes two DN375, two DN600 and DN630 laid at approximately 4%, 6%, 3% 7% and 2% gradient below the road embankment.

Figure 3-7: Gully G

3.8.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C

3.8.3 PIPE WORK AND SURFACE DRAINAGE

Relacing the existing alignment with new Traversable wingwall inlet at Culvert CH12840, including installation of 1050 buried junction manhole, and installation of DN500 Euroflo SN16 culvert crossing the road. to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. And a new DN1050 inlet scruffy dome manhole with concrete inlet apron will be installed at downstream western side of the road. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, two 32 mm RB anchors will be installed. The final alignment needs to be confirmed with the Engineer.

An existing DN375-DN450 culvert at CH12920 within the existing road is still functional, in order to suit the gully extension and road widen design, then it needs to be re-designed. It discharges immediately. So, the following action is warranted:

1. Removing the existing inlet manhole to make it out of the new kerb and channel area.

Open upstream end on dish channel with cast in-situ erosion protection apron

Relacing the existing alignment with new Traversable wingwall inlet at Culvert CH12840, including installation of 1050 buried junction manhole, and installation of DN500 Euroflo SN16 culvert crossing the road. to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. And a new DN1050 inlet scruffy dome manhole with concrete inlet apron will be installed at downstream western side of the road. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, two 32 mm RB anchors will be installed. The final alignment needs to be confirmed with the Engineer.

The existing DN600 culvert at CH12980 is still in good condition based on the CCTV report., in order to suit the road design, the following action is warranted:

2. Removing the existing manhole.

Extending the existing pipeline with DN600 RCRRJ pipe and installing a new DN1050 inlet manhole with scruffy dome to make it out of the new kerb and channel area.

Interrupt the proposed channel drain and construct in-situ concrete to help discharge to the inlet manhole.

Open upstream end on dish channel with cast in-situ erosion protection apron

The existing DN600 culvert at CH13060 is still in good condition based on the CCTV report., to suit the road design, the following action is warranted:

3. Replacing the existing inlet manhole grated lid with scruffy dome.

Running out the concrete dish drain into the existing inlet apron with 20 Mpa site concrete.

Open upstream end on dish channel with cast in-situ erosion protection apron.

Replacing the existing back entry manhole inlet lid with scruffy dome and 200 mm high concrete inlet apron all around.

Preserving the existing flume alignment.

In Gully G south, the existing DN630 culver at CH13140 will be abandoned in place due to the poor condition. A new Culvert is designed for the site including:

4. Installation a new DN1200 Scruffy dome manhole at the lowest point and extend it with DN630 Euroflo culvert that crosses the road and connects to a new DN1200 JUNCTION MANHOLE Additionally, the outlet will feature a DN600 culvert for flume treatment, which will discharge at the designed outfall location. To ensure stability, two 32 mm RB anchors will be installed. At this stage, the outlet flume protection is to be confirmed, which will be updated at 100% design stage.

A new rock lined drains is going to be constructed to drain the water from the new concrete lined drain.

3.9 GULLY H

3.9.1 GENERAL

The following drawings should be referred to for the Gully Site H stormwater detailed design:

1. 1-11264.01-WSP-EWGL-GH-DR-WA-4211

1-11264.01-WSP-EWGL-GH-DR-WA-4212

Gully H is a 6 Ha bush catchment planted in pine which receives runoff from approximately 0.13 Ha of the outlet culvert is DN600 Euroflo laid at approximately 11% below the road embankment.

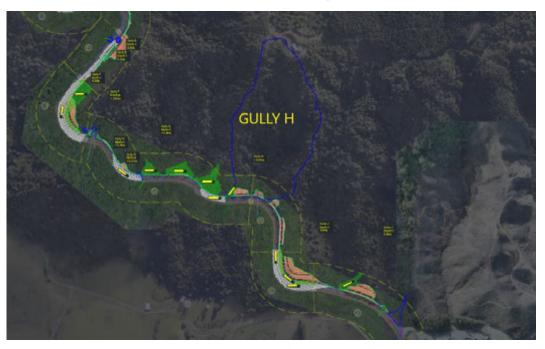


Figure 3-8: Gully H

3.9.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C

3.9.3 PIPE WORK AND SURFACE DRAINAGE

The existing pipeline at CH13220 has been assumed in a good condition based on the records in RAMM and we lack CCTV information. At the 80% design stage, the following action is warranted.

- 2. Extending the existing pipeline with D500 Euroflo SN8 pipe
- 3. Installation of an embankment toe drain in the bush area along the contour to do the excavation.
- 4. The concrete drain will discharge into the rock lined drain area and using 25 MPa cast in-situ concrete splay to change flow direction to the proposed manhole.

3.10 GULLY I

3.10.1 GENERAL

The following drawings should be referred to for the Gully Site I stormwater detailed design:

1. 1-11264.01-WSP-SDDC-SI-DR-WA-4000

1-11264.01-WSP-SDDC-SI-DR-WA-4211

Gully I is a 0.6 Ha bush catchment planted in pine which receives runoff from approximately 0.05 Ha of the outlet culvert is DN500 Euroflo laid at approximately 1% below the road embankment.

Figure 3-9: Gully I

3.10.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C

3.10.3 NEW AND EXISTING PIPE WORK

Culvert CH13400 is at good condition based on the CCTV inspection report. However, in order to align with road design. The following actions will be taken:

2. A new DN500 culvert is designed using a traversable Inlet structure to accommodate site construction conditions, what's more this design allows water to flow from the road surface into stormwater system while ensuring safe passage for pedestrians and vehicles. The water will be discharged from the traversable inlet into a new DN1050 buried inlet manhole. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the proposed outfall location. To ensure stability three 8 mmØ 316SS cables are fastened along the entire length of the flume at the pipe joints. Scour protection will be provided at the culvert extension outlets, with the rock size governed by pipe diameter.

Two embankment toe drains are constructed along contour in the bush area to facilitate water drainage towards suitable points.

3.11 GULLY J

3.11.1 GENERAL

The following drawings should be referred to for the Gully Site J stormwater detailed design:

- 1. 1-11264.01-WSP-EWGL-GJ-DR-WA-4211
 - 1-11264.01-WSP-EWGL-GJ-DR-WA-4212
 - 1-11264.01-WSP-EWGL-GJ-DR-WA-4213
 - 1-11264.01-WSP-EWGL-GJ-DR-WA-4214

Gully J is a 15.3 Ha bush catchment planted in pine which receives runoff from approximately 0.2 Ha of the outlet culverts are two DN1200 and DN500 culverts laid at approximately 13% and 5% gradient below the road embankment.

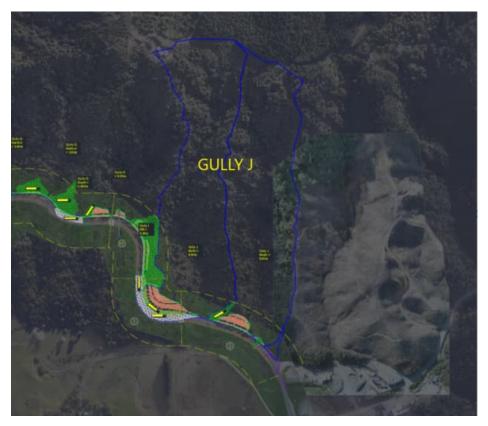


Figure 3-10: Gully J

3.11.2 HYDRAULIC ASSESSMENT

The details are shown in Appendix C

3.11.3 PIPE WORK AND SURFACE DRAINAGE

At Gully J North, there are no changes to the existing pipeline at CH13580. However, the proposed concrete drain extends into the existing rock-lined drain at CH13580.

At CH13633, a Double Superpit arrangement is designed at the southern side of the road. Additionally, the outlet will feature a DN500 SN8 Euroflo pipe for flume treatment, which will discharge at the existing outfall location. To ensure stability, three 8 mmØ 316SS cables are fastened along the entire length of the flume at the pipe joints. Scour protection will be provided at the culvert extension outlets, with the rock size governed by pipe diameter.

Based on the CCTV inspection report, the existing culvert at CH13700 is in a good condition, but does not have sufficient capacity for the catchment. The existing culvert will be extended and a new high flow culvert installed adjacent.

4 LIMITATIONS

This report ('Report') has been prepared by WSP New Zealand Limited ('WSP') exclusively for Waka Kotahi ('Client') in relation to Brynderwyns Spanning from RP11.46 TO 13.79 Stormwater Design Report ('Purpose') and in accordance with the Contract Number PS -8897 SH1 Brynderwyn Hills -Design Services made on the 28th day of June 2023. The findings in this Report are based on and are subject to the assumptions specified in the Report and Design Philosophy Statement on 29th September 2023. WSP accepts no liability whatsoever for any use or reliance on this Report, in whole or in part, for any purpose other than the Purpose or for any use or reliance on this Report by any third party.

In preparing this Report, WSP has relied upon data, surveys, analyses, designs, plans, and other information ('Client Data') provided by or on behalf of the Client. Except as otherwise stated in this Report, WSP has not verified the accuracy or completeness of the Client Data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in this Report are based in whole or part on the Client Data, those conclusions are contingent upon the accuracy and completeness of the Client Data. WSP will not be liable for any incorrect conclusions or findings in the Report should any Client Data be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to WSP.

APPENDIX A – EXISTING CULVERTS CONDITION ASSESSMENT MEMO

Memorandum

То	Mat Chiaroni / Chris Hardy
Сору	
From	Vani Liu
Office	Christchurch
Date	05 December 20235 December 2023
File/Ref	
Subject	Brynderwyns Recovery Work – SH1 RS 303 RP11.46 -13.79 – Existing Culverts Condition Assessment

1 Design Advice

Title: Provide a concise description of the advice and which element of the	Bringdowns Recovery Work Condition Assessment	8 RP11.46 -13.79 – Existing Culverts	
Category:	Design		
Project Number	1-11264.01	Zone:	North
Prepared By:	Vani Liu	Date:	05/12/2023
Reviewed By:	Chris Hardy/Mat Chiaroni	Date:	05/12/2023
For Issue To – For Action Specific name(s)			
For Issue To – For Info Specific name(s)			
Attachments:	Asset CCTV Inspection Asse	ssment Sprea	dsheet

1.1 Purpose

Waka Kotahi has engaged WSP to provide a detailed design for recovery widening works on the south side of the Bringdowns from RP11.46 – 13.79. The works include stormwater design. Sixteen culverts located from RP11.46 – 13.79 were assessed using CCTV inspection footage to determine their existing condition and optional capacity.

Brynderwyns Recovery Work phase 1 Design Philosophy Statement aims to improve the resilience of the Brynderwyns in the short to medium term (10-30 years), with a minimum expected design life departure of 10 years.

This Design Advice outlines the approach adopted in determining each culvert's condition and operational capacity. The document also proposes high-level recommendations for remediation.

1.2 Asset Summary

Sixteen culverts were identified between road chainage RP11.46 -13.79. Table 1 outlines the size and numbers of culverts through the road corridor. And Appendix B_1-11264.01-WSP-EWGL-OA-DR-WA-4200 shows the locations of NZTA Culvert Assets.

Table 1 Existing Culverts Assets and Diameters

Culverts Requiring Maintenance	No. of Culverts
DN375	5
DN450	4
DN600	4
DN900	2
DN1200	1

1.3 Asset Assessment

Eleven of the 16 culverts have been CCTV inspected or visually inspected on site from upstream or downstream.

Attached to this report is a full list of all culverts and recommended actions.

The philosophy for repair or replacement was based on the identification of defects that could result in:

- Significant reduction in the hydraulic capacity.
- Failure due to structural damage.
- Pavement failure.

Culvert defects that fall outside the above threshold will be handed back to the maintenance Contractor as low risk defects that can be managed throughout that culvert remaining asset life.

Examples of damage to be handed back to maintenance Contractor are shown in the following it as follows:

- Minor damage such as localised spalling of concrete and exposed reinforcing at pipe ends.
- Minor cracking with no visible gap and not extending the full circumference or length of the pipe section.
- Minor joint and angular displacement with no possibility of material migrating into the pipe.

2 Design Recommendations

The following culverts have damage which is required to be addressed so that their continued functionality and extend the asset life or to prevent failure of the pavement.

2.1 Culvert 12034

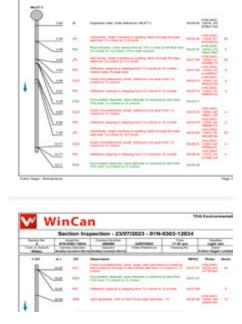


Figure 1 Culvert 12034

The pipeline was installed in 1995, which is quite old. There are three joints in the culvert where the cracking or spalling is observed on the pipe wall, accompanied by surface corrosion around the joints at distances of 4.54 m, 5.50 m, 7.24 m, 9.12 m, 10.09 m, 12.26 m, 14.71 m, 15.87 m, and 17.48 m. The final pipe joint has also shifted out of place, posing a high risk of pavement failure. It is strongly recommended that the entire culvert be replaced to address these issues.

2.2 Culvert 12747

Figure 2 Culvert 12747

The following was observed:

- There is a bend without a chamber at about 5 m.
- A small longitudinal crack has been identified along the pipeline, spanning from 7.91 m to 8.75 m.
- The joint at 8.84 m is displaced, and between 8.84 m and 10.07 m, two significant new longitudinal cracks have emerged.

- A longitudinal crack is evident in the pipe from 10.07 m to 11.46 m, accompanied by corrosion around the affected area.
- The section at 11.46 m pictured has full cracks at 9, 12 and 3 o'clock, so it has effectively failed without deforming or collapsing yet.
- Two large longitudinal cracks have been detected along the pipeline, extending from 11.46 m to 17.7 m.
- Corrosion is evident on the pipe surface surrounding these cracks with exposed steel. Many joints are displaced, and some are opened from 8.84 m to 17.7 m.

The concrete pipe has experienced significant longitudinal cracking, leading to compromised structural integrity, and it is probably being held up by bedding and its own residual strength. Additionally, the joints have been displaced, increasing the risk of pavement failure. Therefore, it is recommended to replace the entire pipeline.

2.3 Culvert 12829

Figure 3 Culvert 12829

The CCTV inspection was discontinued at 8.86 m. The clear diameter of the pipe has been reduced by approximately 30% due to accumulated debris and silt, necessitating thorough cleaning for the entire pipeline. Furthermore, some movement exists at some joints through the pipeline; however, conducting a definitive assessment proves challenging due to the limited visibility in the footage data.

Additionally, there is considerable damage near the joint at 4.34 m, allowing water to seep through, and two small longitudinal cracks along the pipe from 8.43 m to 8.86 m. At this stage, a recommendation for pipe replacement will be made at the damaged section.

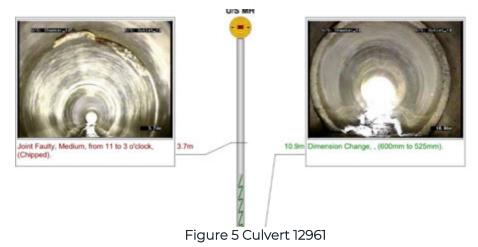

2.4 Culvert 12900

Figure 4 Culvert 12900

The pipe size transitions to 450 mm toward the outlet. The CCTV inspection was halted at 13.18 m due to a drop, and an external photo at the outlet is required to assess the situation, as the footage does not clearly reveal an opening. This pipe might be a candidate for replacement, but more detailed information is necessary to determine if only the outlet requires fixing. The visible sections of the pipe appear to be in reasonable condition where there are no cracks, but it is likely that the cracks are situated beneath the live lanes, indicating a potential worsening of the situation over time.

2.5 Culvert 12961

In general, the pipe is in a good condition. There is a significant crack near the joint at 3.74 m, exposing the steel shown in the CCTV pipeline Images Report. Action needs to be taken to prevent the crack being developed. Patches or mechanical seals can be used to seal the joints.

2.6 Culvert 13134

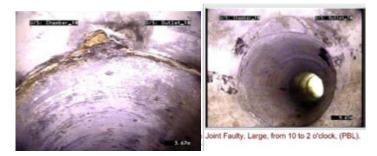


Figure 6 Culvert 13134

The joint at 3.8 m exhibits a significant crack, exposing the steel beneath. This situation poses a risk of water leakage from the joint. The seepage of water can erode the nearby soil, jeopardizing the stability of the ground above the pipe. With time, this erosion may escalate, potentially causing sinkholes and even structural damage to roads and nearby infrastructure. Immediate attention and repair are necessary to prevent these hazardous consequences. The last ~8m of the culvert needs to be replaced.

2.7 Other Culverts

There are two culverts that require maintenance works. The work required is generally cleaning and it is recommended that the cleaning works be carried out by the maintenance Contractor. Below is the list of the culverts:

• Culvert 12672

Figure 7 Culvert 12672 pipe has blockage (>30% Pipe Capacity)

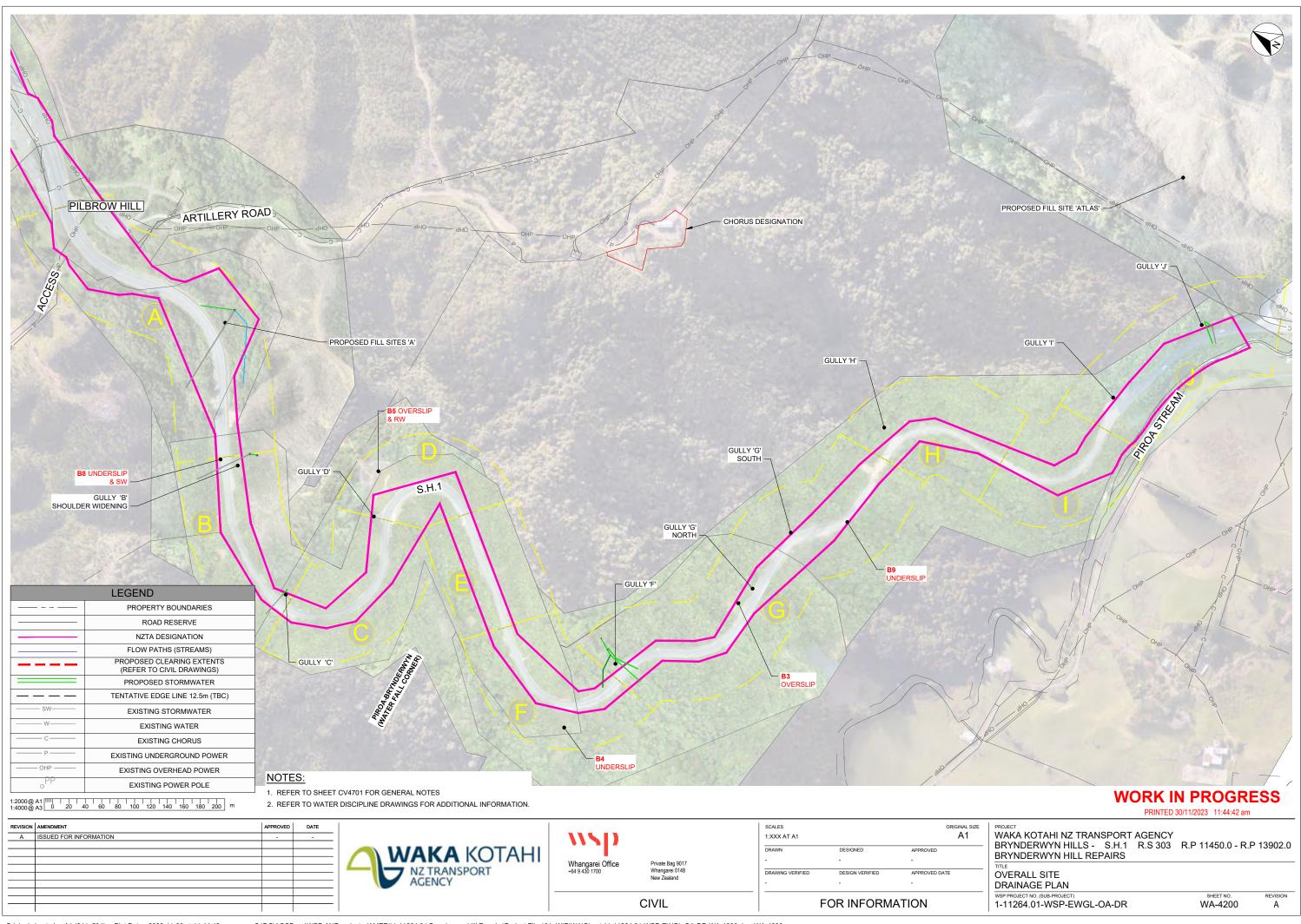
Figure 7 above represents of blockage of >30% pipe capacity. This is a maintenance issue which is required to be addressed to ensure continued functionality of the culvert. And it also shows that there is a small cracking along a single pipe length through culvert 12672. The pipe is a concrete pipe, and it is in reasonable condition given its apparent age and would not require immediate replacement.

• Culvert 13390(installed in 1998)

The five culverts depicted below lack CCTV inspection information, according to the RAMM, Culverts 11685, 11846, and 13213 are reported to be in good condition, while Culverts 12264 and 12672 are noted as being in poor condition. It is worth noting that the conditions of Culverts might be similar to those of pipelines of the same age, which have CCTV data available.

- Culvert 11685 (installed in 1995)
- Culvert 11846 (installed in 1995)
- Culvert 12264 (installed in 1995)
- Culvert 12672 (installed in 1998)
- Culvert 13213 (installed in 1998)

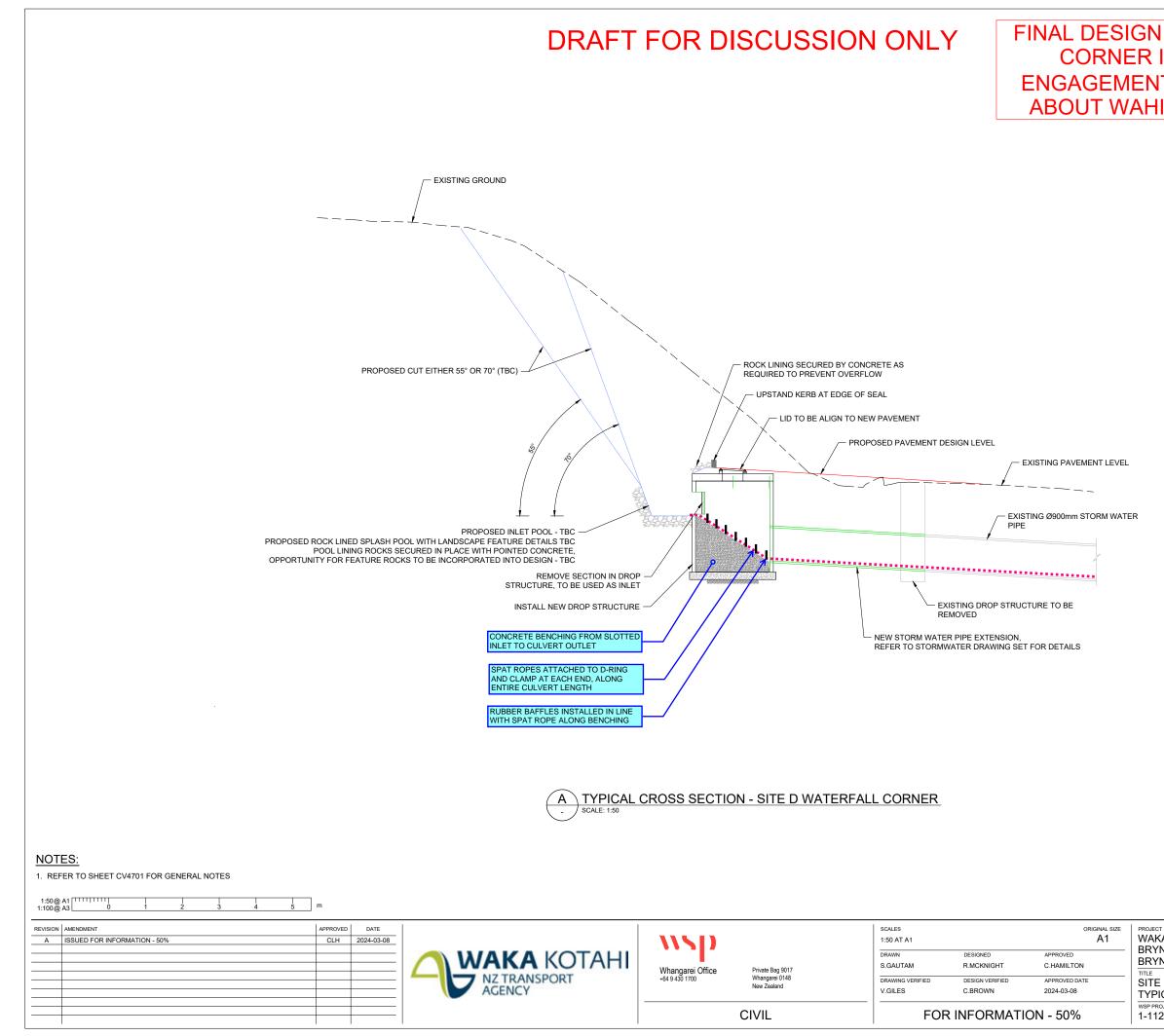
3 Compliance


This section lists standards and documents to be complied with, and approved departures.

- AS/NZS 3725:2007 Design for Installation of Buried Concrete Pipes
- Design Philosophy Statement Brynderwyns Recovery Work SH1 RS 303 RP11.46 -13.79.
- NZTAP46 Stormwater Specification
- NZTA (2010), F3 Specification for Pipe Culvert Construction

No departures are proposed.

4 APPENDIX A: Asset CCTV Inspection Assessment Spreadsheet


Culvert CCTV				CCTV dat													
Requests				missing							CCTV D	DAMAGE NOTED					
				CCTV dat provides													
					-												
											Anything to affect Hydraulic Structural Dar		in failure				
roject: 1-1264.01											Capacity?	in 5-10 years	Maintenance Iss	82			
													Blockage - in	no Ipe			
											Barrel	1 1	needs (T	mp .			
	Locat Chainaze (in (Show		on (Shown in DN(Show	n in DN (Shown	nin			Condition Date shown in Construction			Settlement - Pipe suffcient to Deformation		Joint cleaning ob paration (>30% c/s t	an)			On Mainten
					Comments shown on the inspeted pdf sketch	Comments (Shown in RAMM)	in RAMM	RAMM Date	Age Action	CCTV Date	affect flow in C/S Exposed reinf.	. 10mm >	-40mm area) <	0% Notes (WSP assessment)	Other PM Comments	PM ACTION List	List
						Inlet at bottom of deep, bush-covered gully. Difficult to access. Outlet was not found. Inlet clear. Culvert clear and good condition								Needs to be inspected visually again or CCTV inspection.			
	15829	11685	11685	900	Missed location indicative	Outlet was not round. Inlet clear, curvert clear and good condition inside.		28/09/2022 5/03/1995	28 Inspected					Needs to be inspected visually again or ULT V inspection. Pipe is haunched & bedded in mass concrete; condition is considered acceptable (MC 7/11/2023)	ACTIVE SUP where diggers have previously been digging too unsafe to enter active slip area on nights further investigation required on days reffer to photos	acceptable	
						Inlet in a deep drop chamber at the bottom of the gully. Inlet clear											
				450		Clear and good condition inside for as far as can be seen. Outlet in steep bush-covered gully was not found. Water was flowing throug											
01N-0303 Gully Extension B	15826	11846	11846	450	Missed location indicative	from the inlet OK, so outlet should be OK.	Good	28/09/2022 5/03/1995	28						unable to locate due spent 30 minutes looking through bush unable to locate	acceptable	
						Inlet in hole and prone to getting blocked. Culvert clear and in good condition inside. Outlet clear but in scoured-out hole and recessed								Three joints in the culvert where significant cracking or spalling is observed on the pipe wall. Pipewall corrosion around the joints 4.54m, 5,50m,7.24m,9.12,10.09m, 12.26m, 14.71m, 15.87m, 17.48m, and minor cracking on the surface at 15.87m, joints separati			
01N-0303 Gully Extension C	148229	12034	12034	450	Missed location indicative	under bank.	Good	28/09/2022 5/03/1995	28 Inspected /CCTV	23/07/2023	x	x	x	4.54m, 5,54m, 7.24m, 5.12,00,05m, 12,26m, 14,71m, 15,87m, 17,48m, and minor cracking on the surface at 15,67m, joints separate at 4.53m is more than 40mm, the last joint is displaced. 85% of the pipeline needs to be replaced.	pipeline is in good condition, few joint faulty, , and one displacement at 18.8m	Replace	
																THe old pipe has bee	
				450		Inlet in drop chamber 148230 is completely blocked. Outlet is somewhere down steep, slumping bank covered in vegetation -										replaced with twin w HDPE 2023 (7/11/20	
						culvert could be disjointed and blocked judging by the way the land								Unble to located, need to be inspected visually or CCTV inspection		the condition conside	tered
01N-0303 Gully Extension D	15825	12264	12264	450	BS repired, not required - location indicative	is slumping.	Poor	28/09/2022 5/03/1995	28					THe old pipe has been replaced with twin wall HDPE 2023 (MC7/11/2023)	not required	acceptable	
01N-0303	15824	12358	12358	900 900	waterfall missed - Missed location indicative	Inlet clear outlet clear, flows ok	Good	26/07/2021 5/03/1995	28 CCTV	23/07/2023		x		2 cracks at 6.28m round the joint, no ingtress of metal, handback to Maintance Contractor, the culvert's functionality is retained.	Waterfall pipeline is in good condition no serious flaults found		Repair (defe
				375		Inlet in catchpit 148225 is clear. Outlet across road is buried. Culver								CCTV inspection abandoned unable to pass at 2.38m. About the first 3m, and the pipe diameter reduceed more than 25% dut to	the control of the co		
01N-0303	15818	12672	12672	375	Missed location indicative	95% blocked inside.	Poor	28/09/2022 15/02/1998	25 CCTV	24/07/2023			×	debris sit, and CCTV_couldn't fully inspect, will need cleaning	opend cesspit to find is 100% full of debris vacume to clean and hydro out unable to complete pipeline we need downstream access via Southern Clousure		Cleaning
				375		and litter. Inlet is open. Outlet is down steep, bush-covered slope above a slip. Outlet is clear. Culvert is clear inside and in good								There are 2 longitudinal cracks observed along the pipeline, spanning from 11.46 meters to 17.7 meters. Additionally, corrosion is apparent on the pipe surface surrounding these cracks, plus exposed steel. Many joints displaced from 8.84m to 17.7 m. replace th			
01N-0303 Gully Extension F	15816	12747	12747	375	Missed location indicative	condition. Deep hole over culvert on shoulder	Good	28/09/2022 15/02/1998	25 CCTV	29/08/2023	x	×	×	entre pipeline. Inite contra particularità di con metero, me con unanziano di contra di antico di contra di contra di contra di Inite contra materia di contra di con metero, me con unanziano di metero di me pipe neo uceri negoto di approximatery sono dia		Replace	
														to accumulated debris and silt, necessitating thorough cleaning for the entire pipeline. Furthermore, it is assumed that a joint	۳		
														displacement occurred at 3.53 meters; however, conducting a definitive assessment proves challenging due to the limited visibility	yin .		
				375		Inlet in drop chamber 148223 - partly blocked. Outlet pipe has larg	w.							the footage data.			
						diameter than the rest - 525 mm v. either 375 or 450. Outlet about								Additionally, there is a significant crack near the joint at 4.34 meters, allowing water to seep through. And two small longitudinal			
01N-0303	15815	12829	12823	525	blocked near outlet abandoned at 8.9m	40% blocked. About 60% blocked further in. Pipes in good conditio Inlet in drop chamber 148236 - partly blocked. Outlet 10% blocked.		29/09/2022 15/02/1998	25 CCTV	29/08/2023	×	x	x	cracks along the pipe from 8.43 meters to 8.86 meters. If the joint displaced is confirmed, a strong recommendation for pipe The pipe size transitions to 450mm toward the outlet. The CCTV inspection was halted at 13.18 meters due to a drop, and an	Ran out of water and time to complete pipeline to attempt again on day 2	Replace	
				375	375 Diameter change near end of culver	Outlet pipe is 525 mm diameter - larger than the other pipes. Rest								external photo at the outlet is required to assess the situation, as the footage does not clearly reveal an opening. This pipe might i	be		
01N-0303	15814	12900	12906	525	(13.6m), unable to complete inspection	culvert clear. Good condition.	Good	29/09/2022 15/02/1998	25 CCTV	29/08/2023	x		x x	a candidate for replacement, but more detailed information is necessary to determine if only the outlet requires fixing. The visible	e completed by previous operator	Replace	
Gully Extension G				600	600mm change to 525 at 10.9m cutlet directly	Scruffy dome drop chamber at inlet, with short side culvert drainin into drop chamber. Inlet, outlet and inside clear and in good	5							There is a significant crack near the joint at 3.74m, exposing the steel, and the damaged section needs to be replaced or seal the			
01N-0303 North	15813	12961	12963	600	onto embankment	condition, apart from a rubber ring come out of one joint.	Good	29/09/2022 15/02/1998	25 CCTV	17/03/2023	x	x		cracks	completed by previous operator	Repair (defer)	or Seal the c
Gully Extension G 01N-0303 South		12026	10000	600	extra MH (buried) at 21.7m, ponding within pipeline at buried MH junction	Inlet in drop chamber 47269. Outlet in manhole 45985. Culvert doe not run straight to manhole - has a kink. All clear inside.	s Good	29/09/2022 2/05/2006	17 CCTV	17/03/2023				There is no CCTV video available in the CCTV library. However, the report available provides limited information about the culvert shows in the report that pipe condition is good	t. It completed by previous operator	No actions	
UIN-USUS South	45816	13036	13036	450	pipeline at buried MH junction	not run straight to mannole - has a kink. All clear inside.	Good	29/09/2022 2/05/2006	1/ 0010	17/03/2023				snows in the report that pipe condition is good he joint at 3.8m exhibits a significant crack, exposing the steel beneath. This situation poses a risk of water leakage from the joint.		NO actions	
				450										The seepage of water can erode the nearby soil, jeopardizing the stability of the ground above the pipe. With time, this erosion m			
01N-0303	15810	13134	13144	600	Deteriorated,outfall directly onto bank	Inlet in drop chamber 148235. Clear and in good condition. Culvert bends slightly near outlet.	Good	29/09/2022 15/02/1998	25	17/03/2023				escalate, potentially causing sinkholes and even structural damage to roads and nearby infrastructure. Immediate attention and repair are necessary to prevent these hazardous consequences. The last "8m of the culvert needs to be replaced.	completed by previous operator	The last ~8m of hte c needs to be replaced	
						Inlet in bottom of gully. Outlet somewhere down very steep unstal	sie										
Gully Extention H	15900			600		bank. Inlet blocked with dead branches, but culvert clear and good condition inside	Good	20/00/2022 15/02/1008	35					Needs to be increasted visually amin or CCDV increasting			
Survey South		13/13	10210		300/225 Blocked near outlet (3.5m) from end,												
					unable to complete inspection, shaown as 375	Inlet in drop chamber 148237 - OK. Culvert about 30% blocked								The pipeline is at good condation as per the CCTV inspection report. The clear diameter of the pipeline is reduced by approximate			
01N-0303	15808	13390	13390	375	in RAMM Material change, grade change, socket	towards the outlet but otherwise clear and in good condition. Inlet in bottom of gully and covered with a heavy iron grate. Outlet		29/09/2022 15/02/1998	25	17/03/2023			x	30% due to accumulated debris and silt, heavy cleaning is required towards to the outle 11.92m	completed by previous operator		yes (Cleaning)
				1200	separation at 34.6, outfall armoured and in go	d well down bank on private property. All clear and good condition											
01N-0303 Gully Extension I		13554	13557	1200	condition.	inside.	Good	29/09/2022 15/02/1998	25	16/03/2023				The pipelin is at good condtaion as per the CCTV inspection report.	completed by previous operator	No actions	
01N-0303 Gully Extesion J	15805	13686	13697	600 600	stream	Outlet down bank on private property.	Good	29/09/2022 15/02/1998	25	16/03/2023				The pipelin is at good condition as per the CCTV inspection report.	completed by previous operator	No actions	

Original sheet size A1 (841x594) Plot Date 2023-11-30 at 11:44:42 am

C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4200.dwg WA-4200

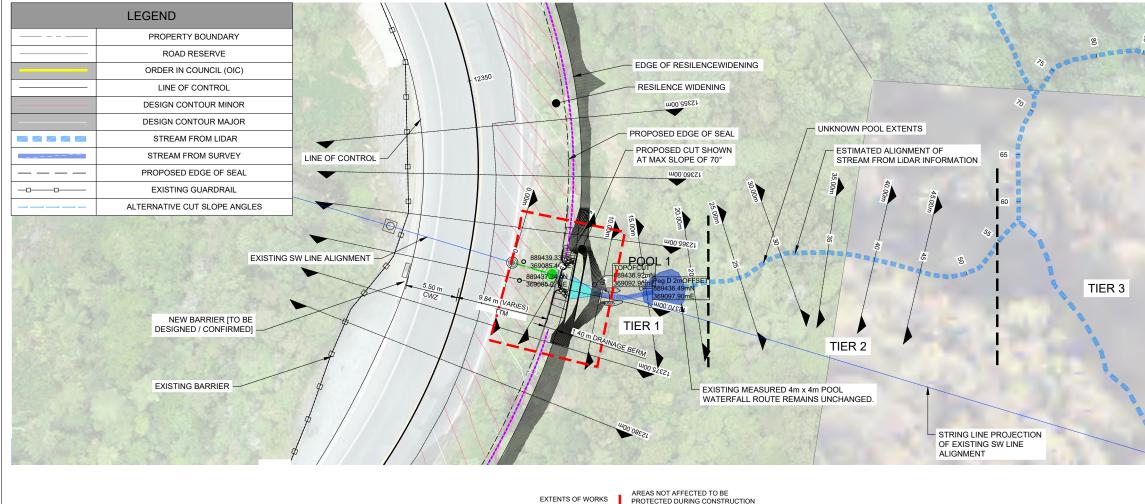
APPENDIX B – ECOLOGY REPORT (FISH PASSAGE)

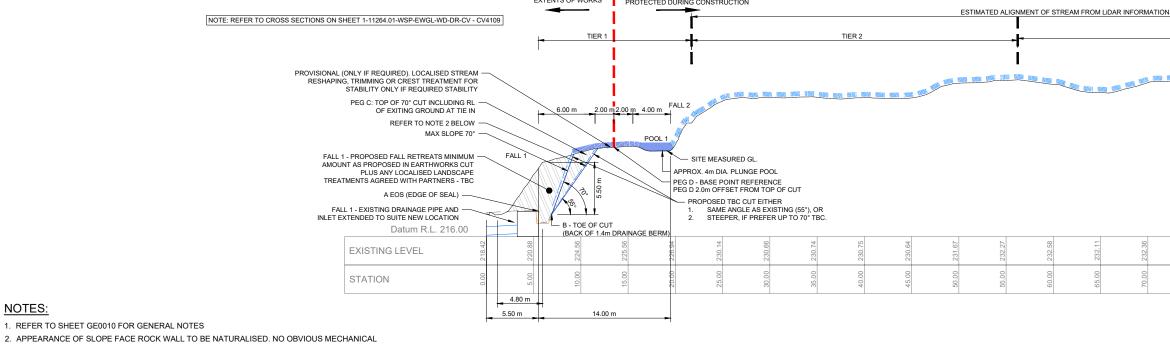
Original sheet size A1 (841x594) Plot Date 2024-04-18 at 7:44:46 am C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\CV\Sheets\1-11264.01-WSP-EWGL-WD-DR-CV_CV4105.dwg CV4105

FINAL DESIGN OF WATERFALL CORNER IS PENDING. ENGAGEMENT IS WITH HĀPU ABOUT WAHI TAPU VALUES

WORK IN PROGRESS

PRINTED 18/04/2024 7:44:46 am

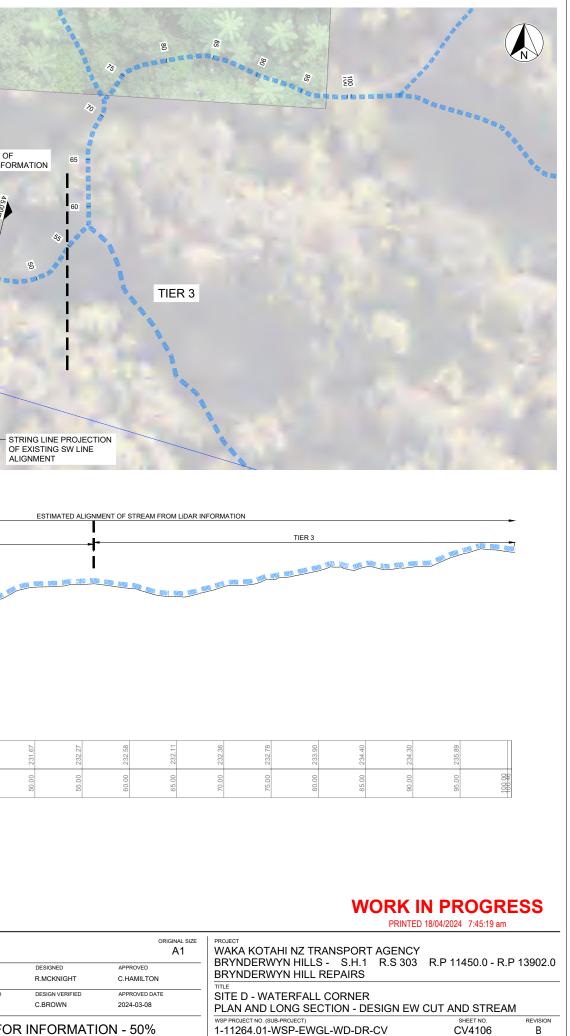

WAKA KOTAHINZ TRANSPORT AGEI	NCY
BRYNDERWYN HILLS - S.H.1 R.S.	303 R.P 11450.0 - R.P 13902.0
BRYNDERWYN HILL REPAIRS	
TITLE	

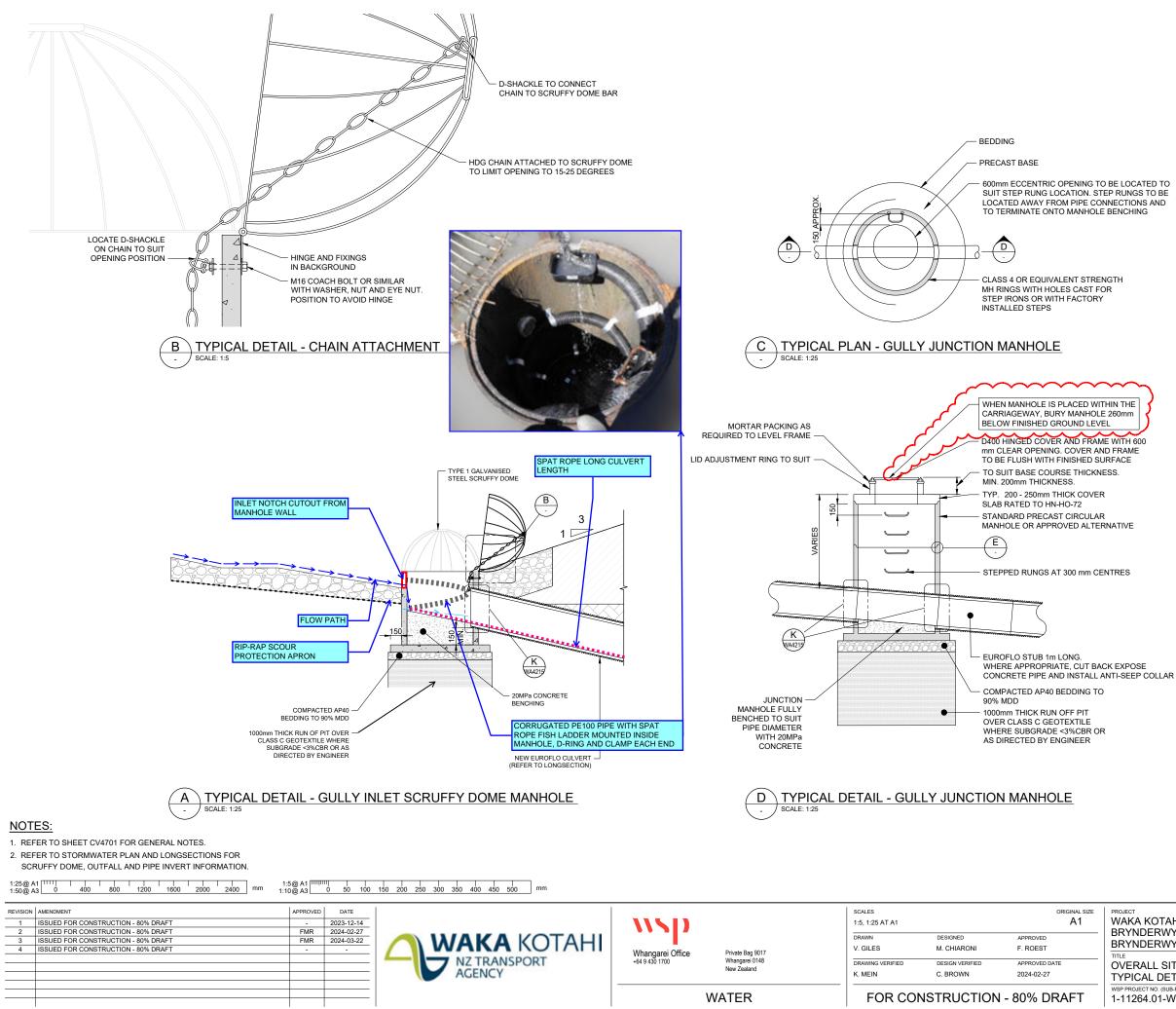

SITE D - WATERFALL CORNER TYPICAL SECTION

1-11264.01-WSP-EWGL-WD-DR-CV

SHEE	I NU.
CV4	105

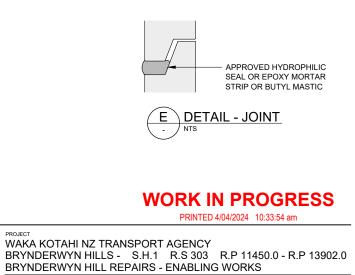
REVISION


NOTES:

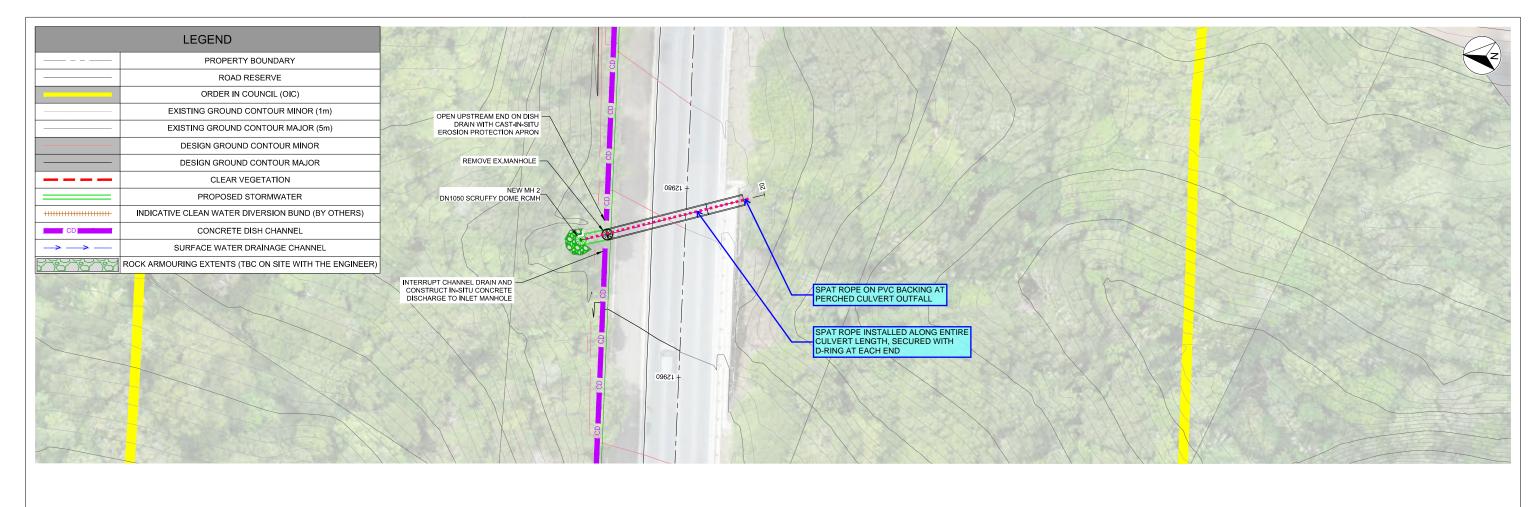

1. REFER TO SHEET GE0010 FOR GENERAL NOTES

MARKINGS ON ROCK FACE TO BE SEEN AROUND WATERFALL. DESIRED OUTCOME IS NATURAL SPLIT FACE ROCK WITH NATURALLY FORMING ROCKS AND CREVICES

1:200@ A1 IIII 1:400@ A3 0 10 12 14 16


A	AMENDMENT ISSUED FOR INFORMATION - 50% ISSUED FOR INFORMATION - 50% (SETOUT POINTS ADDED)	APPROVED CLH	DATE 2024-03-08	WAKA KOTAHI	wsp		SCALES 1:200 AT A1 DRAWN S.GAUTAM	DESIGNED R.MCKNIGHT	ORIGINAL SIZE A1 APPROVED C.HAMILTON
				NZ TRANSPORT AGENCY	Whangarei Office +64 9 430 1700	Private Bag 9017 Whangarei 0148 New Zealand	DRAWING VERIFIED	DESIGN VERIFIED C.BROWN	APPROVED DATE 2024-03-08
						CIVIL	FOR	INFORMATIO	N - 50%

Original sheet size A1 (841x594) Plot Date 2024-04-04 at 10:33:54 am


C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4214.dwg WA4214

OVERALL SITE TYPICAL DETAILS - SHEET 1 1-11264.01-WSP-EWGL-OA-DR

SHEET NO.	
WA421	4

REVISION 4

SCALES

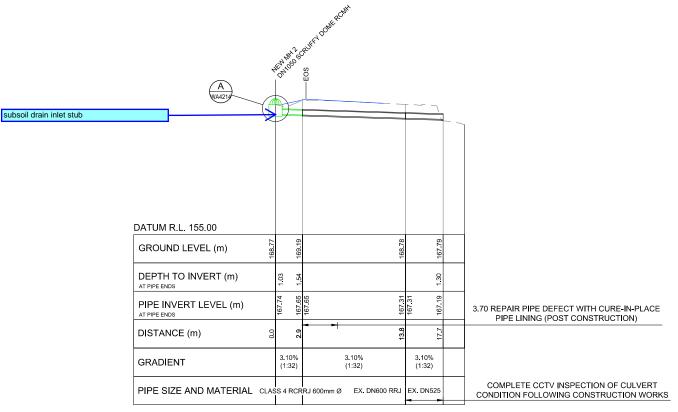
DRAWN

1:200 AT A1

S GAUTAM

V.GILES

DRAWING VERIEIEI


DESIGNED

DESIGN VERIEIED

FOR CONSTRUCTION - 80% DRAFT

M.CHIARONI

V.LIU

NSD

Whangarei Office +64 9 430 1700

Private Bag 9017 Whangarei 0148 New Zealand

CIVIL

NOTES:

1. REFER TO SHEET CV4701 FOR GENERAL NOTES

6 8 10 12 14 16 18 20 m

AMENDMENT	APPROVED	DATE	
ISSUED FOR CONSTRUCTION - DRAFT 80%	FMR	2024-02-09	
			1

AGENCY

NAKA KOTAHI

NZ TRANSPORT

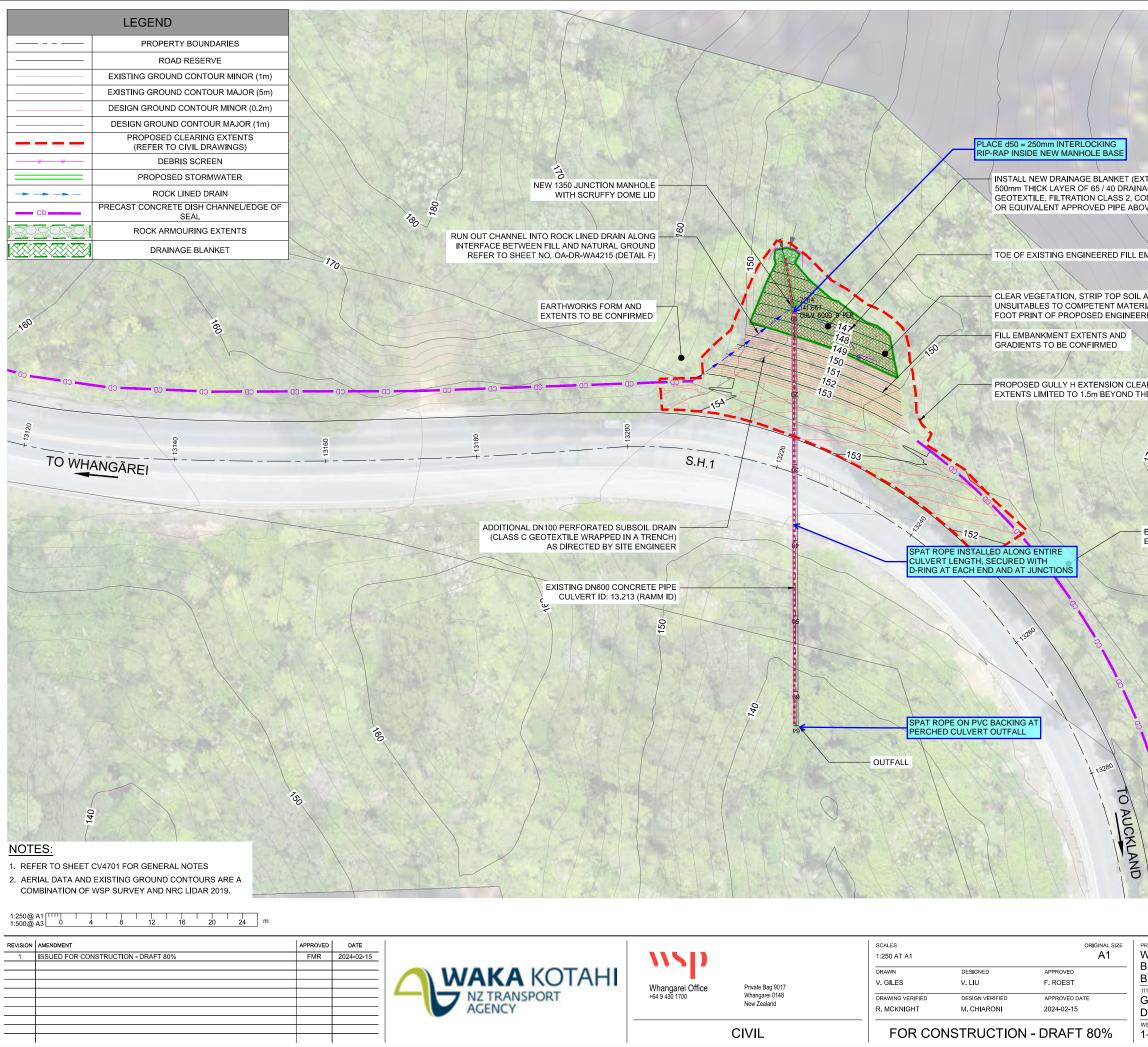
WORK IN PROGRESS

PRINTED 12/02/2024 9:22:46 AM

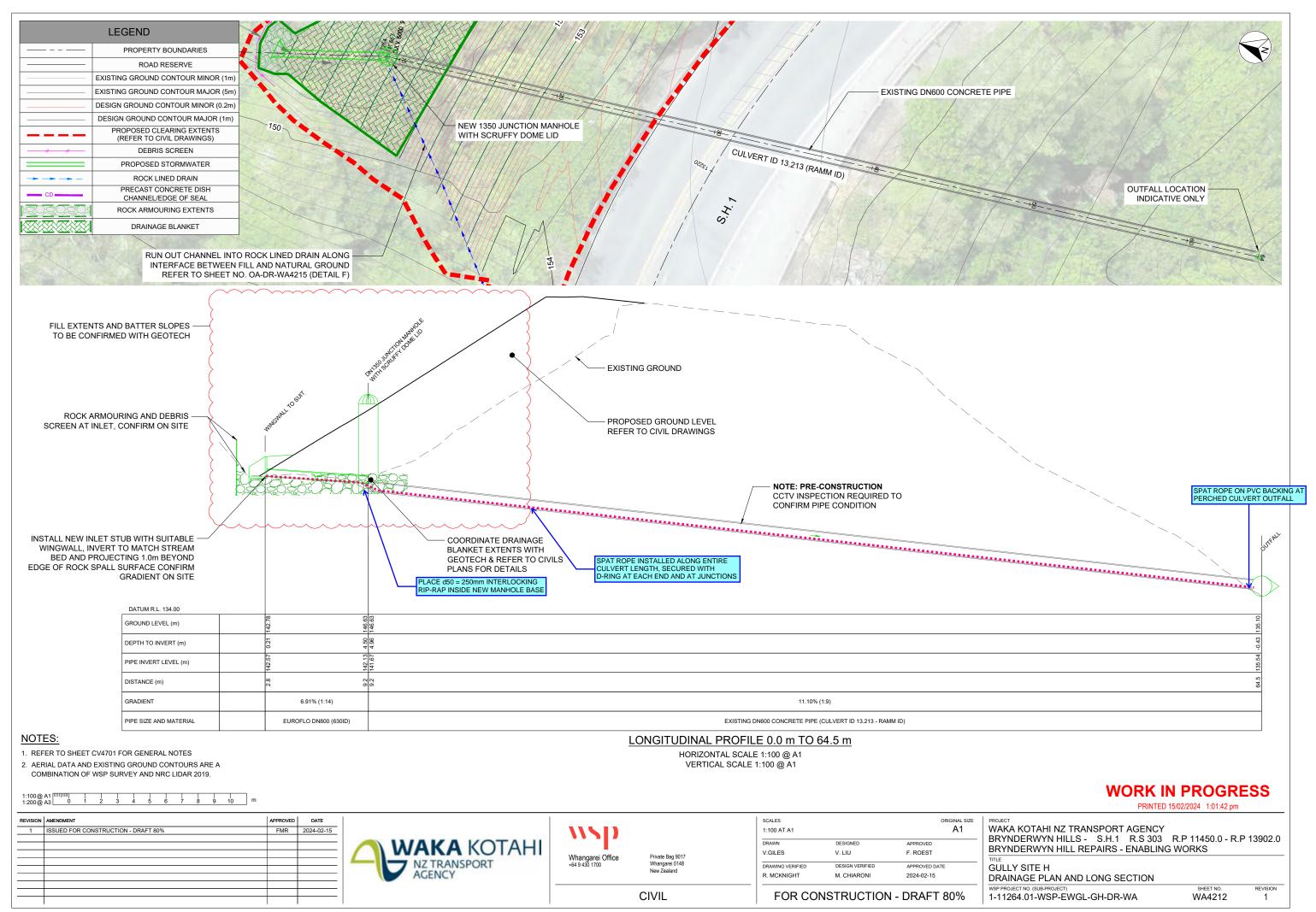
WAKA KOTAHI NZ TRANSPORT AGENCY BRYNDERWYN HILLS - S.H.1 R.S 303 R.P. 11450.0 - R.P. 13902.0 BRYNDERWYN HILL REPAIRS - ENABLING WORKS

GULLY SITE G NORTH DRAINAGE PLAN AND LONGSECTION 2

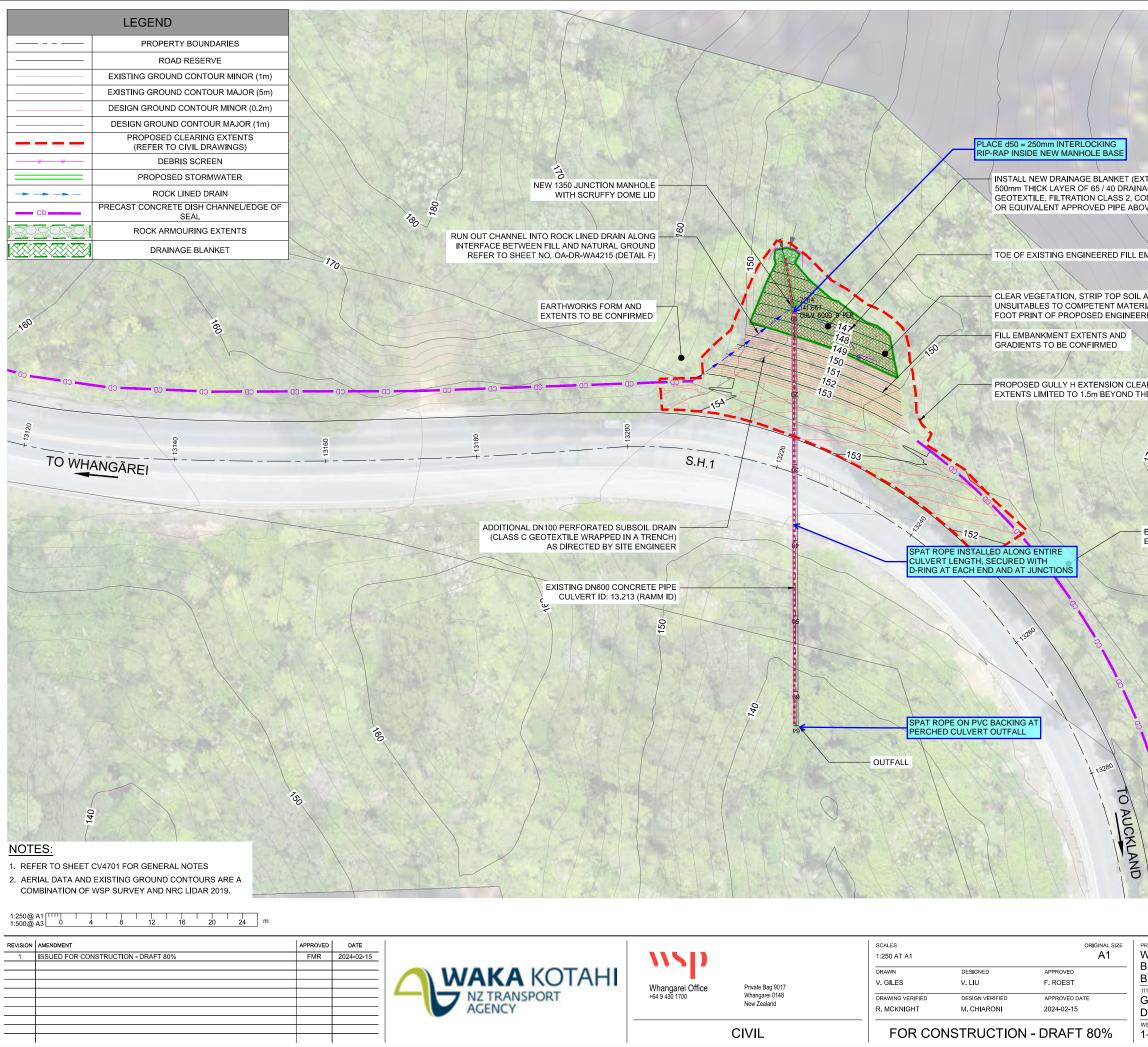
1-11264.01-WSP-EWGL-DR-CV

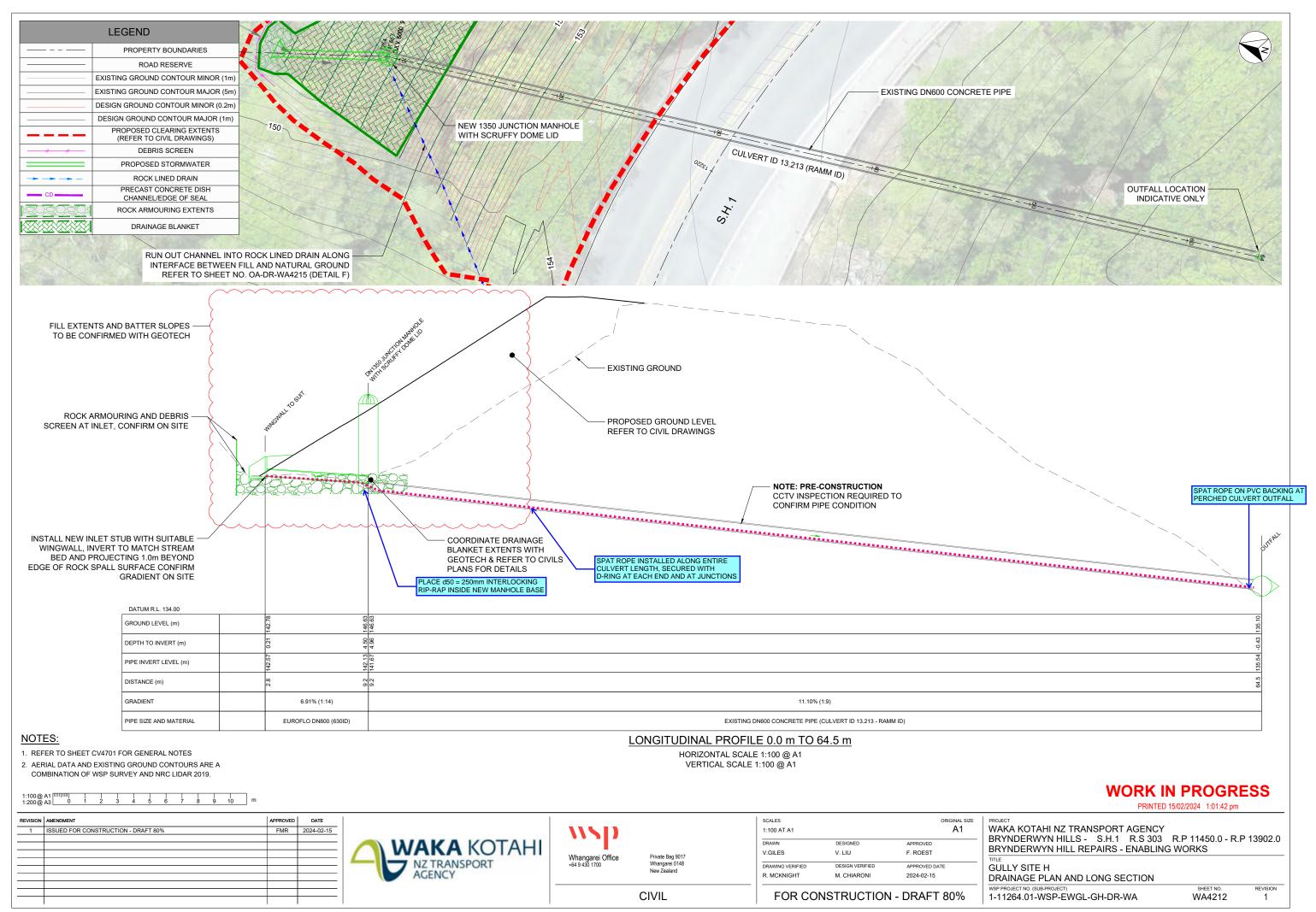

ORIGINAL SIZE A1

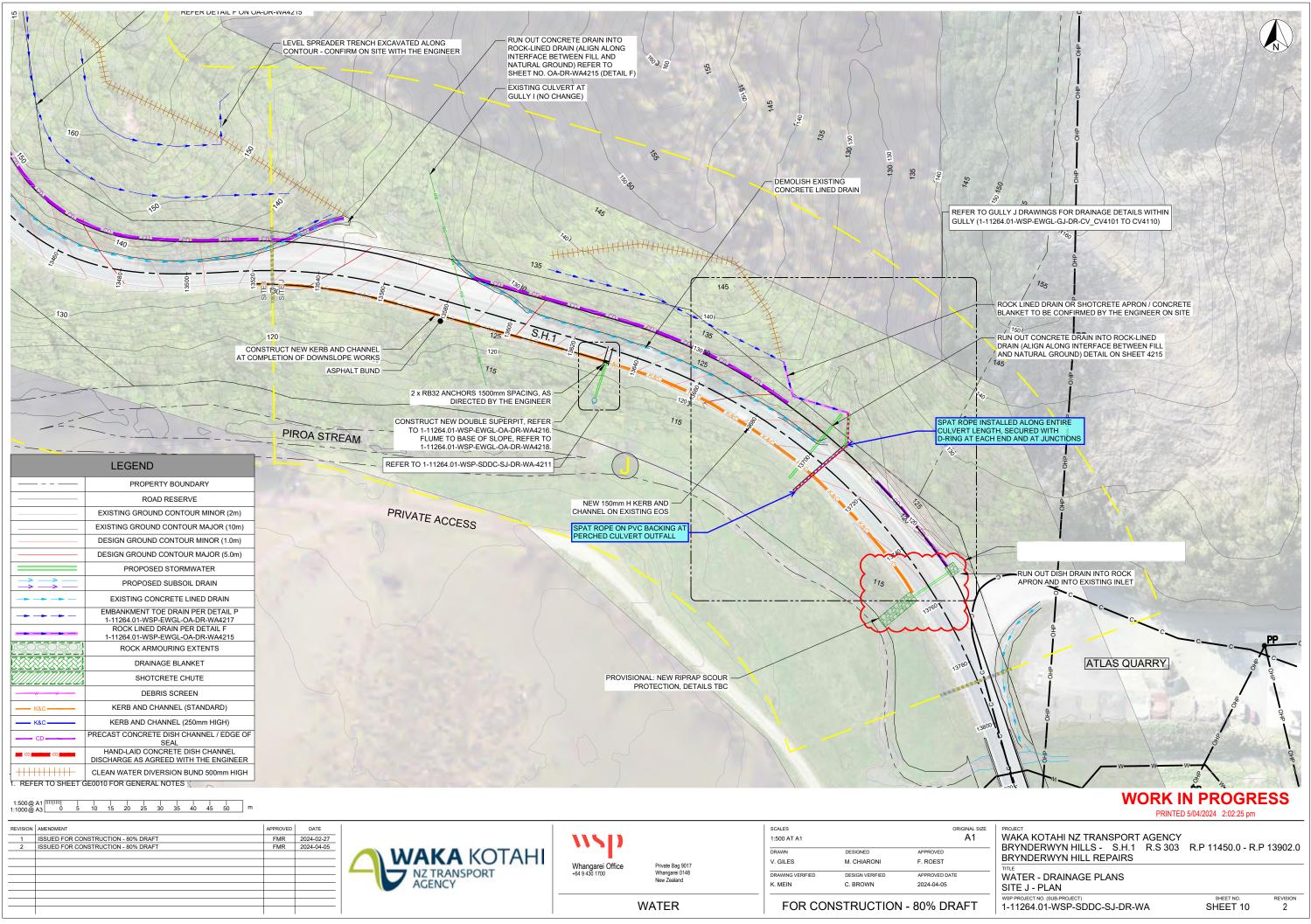
APPROVED


F.ROEST

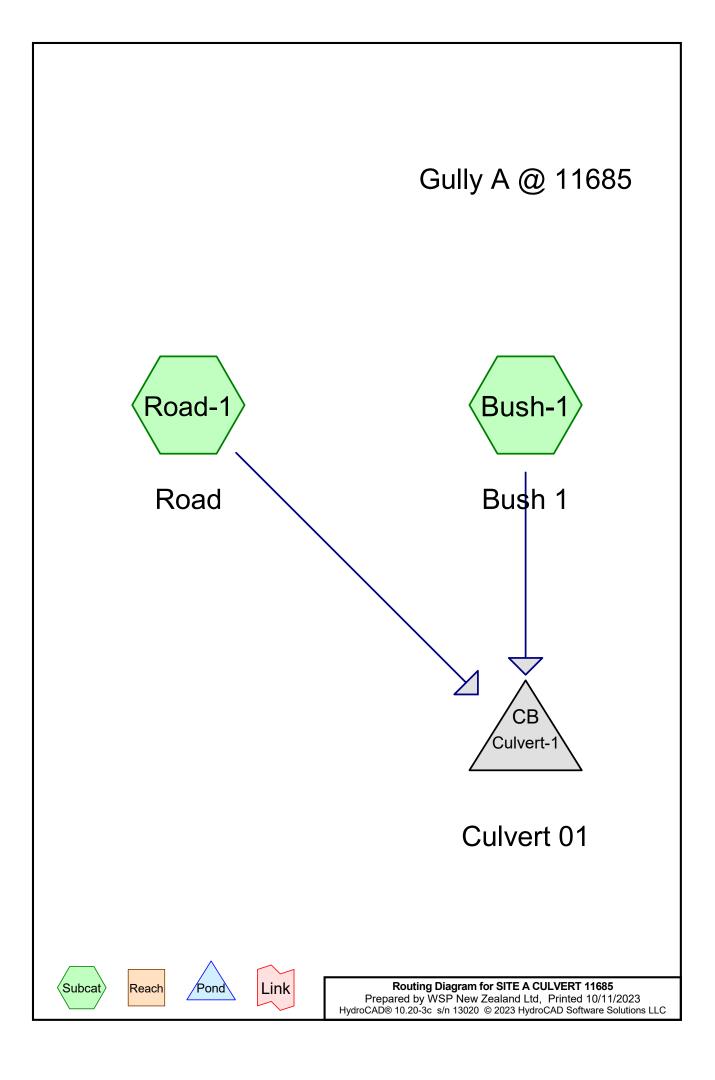
2024-02-09


SHEE	IN	Ų.	
WA4	2	1	3


XTENT TO BE CONFIRMED BY ENGINEER) AGE METAL WRAPPED IN STRENGTH CLASS C CONNECT TO MANHOLE WITH DN100 NEXUSFLO OVE MANHOLE OUTLET INVERT	
EMBANKMENT	
AND	
RIAL WITHIN RED FILL	
EARING EXTENTS. THE CURRENT EMBANKMENT	
E.	
170	
EARTHWORKS FORM AND EXTENTS TO BE CONFIRMED	
	11/2
	1 Alera
	- Barry
	PROGRESS //2024 4:11:42 pm
PROJECT WAKA KOTAHI NZ TRANSPORT AGENCY	
BRYNDERWYN HILLS - S.H.1 R.S 303 R.F BRYNDERWYN HILL REPAIRS - ENABLING WU TITLE	
GULLY SITE H DRAINAGE PLAN wsp project no. (sub-project)	SHEET NO. REVISION
1-11264.01-WSP-EWGL-GH-DR-WA	WA4211 1


Original sheet size A1 (841x594) Plot Date 2024-02-15 at 1:01:42 pm C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-GH-DR-WA-4212.dwg WA4212

XTENT TO BE CONFIRMED BY ENGINEER) AGE METAL WRAPPED IN STRENGTH CLASS C CONNECT TO MANHOLE WITH DN100 NEXUSFLO OVE MANHOLE OUTLET INVERT	
EMBANKMENT	
AND	
RIAL WITHIN RED FILL	
EARING EXTENTS. THE CURRENT EMBANKMENT	
E.	
170	
EARTHWORKS FORM AND EXTENTS TO BE CONFIRMED	
	11/2
	1 Alera
	- Barry
	PROGRESS //2024 4:11:42 pm
PROJECT WAKA KOTAHI NZ TRANSPORT AGENCY	
BRYNDERWYN HILLS - S.H.1 R.S 303 R.F BRYNDERWYN HILL REPAIRS - ENABLING WU TITLE	
GULLY SITE H DRAINAGE PLAN wsp project no. (sub-project)	SHEET NO. REVISION
1-11264.01-WSP-EWGL-GH-DR-WA	WA4211 1

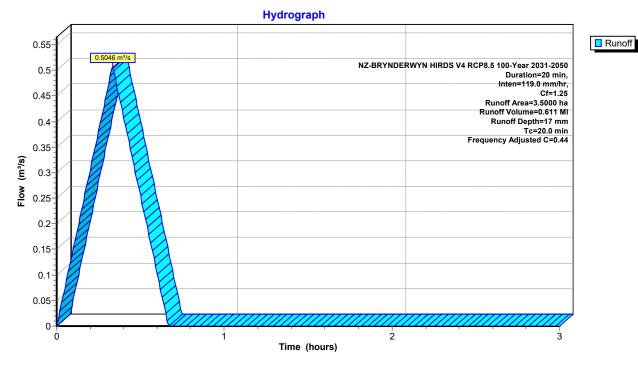


Original sheet size A1 (841x594) Plot Date 2024-02-15 at 1:01:42 pm C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-GH-DR-WA-4212.dwg WA4212

					K. MEIN	C. BROWN	2024-04-05
			Whangarei Office +64 9 430 1700	Private Bag 9017 Whangarei 0148 New Zealand	DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE
					V. GILES	M. CHIARONI	F. ROEST
	 20210100				DRAWN	DESIGNED	APPROVED
D FOR CONSTRUCTION - 80% DRAFT							
		CONSTRUCTION - 80% DRAFT FMR 2024-02-27 CONSTRUCTION - 80% DRAFT FMR 2024-04-05	CONSTRUCTION - 80% DRAFT FMR 2024-04-05	CONSTRUCTION - 80% DRAFT FMR 2024-04-05	CONSTRUCTION - 80% DRAFT FMR 2024-04-05	CONSTRUCTION - 80% DRAFT FMR 2024-04-05	CONSTRUCTION - 80% DRAFT FMR 2024-04-05

APPENDIX C – HYDROLOGY AND HYDRAULIC CALCULATIONS

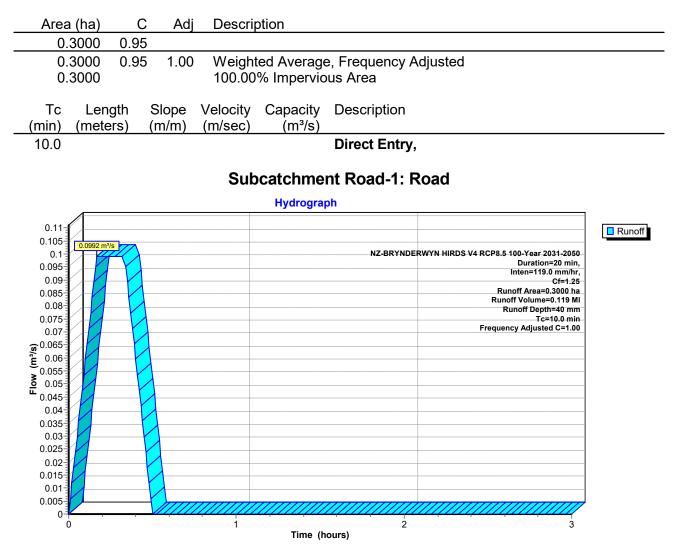
Z-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25 Prepared by WSP New Zealand Ltd Printed 10/11/2023 HydroCAD® 10.20-3c s/n 13020 © 2023 HydroCAD Software Solutions LLC Page 2


Summary for Subcatchment Bush-1: Bush 1

Runoff = 0.5046 m³/s @ 0.33 hrs, Volume= 0.611 Ml, Depth= 17 mm Routed to Pond Culvert-1 : Culvert 01

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

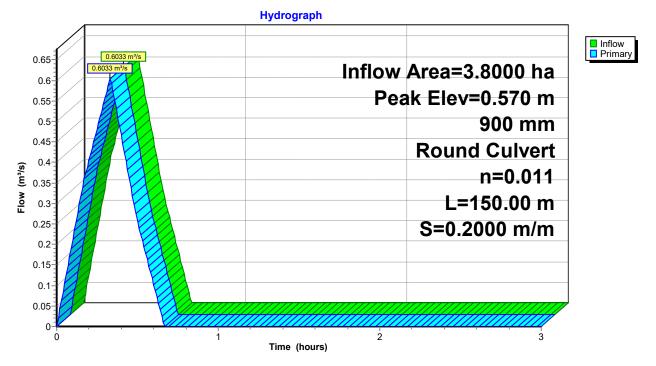
A	rea (ha)	C	; Adj	Descri	ption					
	3.5000	0.35	;	mediur	medium soakage bush and scrub cover 0.25 + 0.1 for steep slope					
	3.5000	0.35	0.44	0	•	e, Frequency Adjusted				
	3.5000			100.00	% Pervious	Area				
Т	rc Lei	ngth	Slope	Velocity	Capacity	Description				
(mii	n) (met	ers)	(m/m)	(m/sec)	(m³/s)					
20	.0					Direct Entry,				

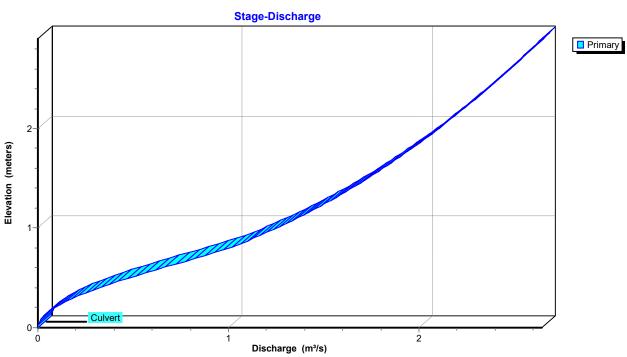

Subcatchment Bush-1: Bush 1

Summary for Subcatchment Road-1: Road

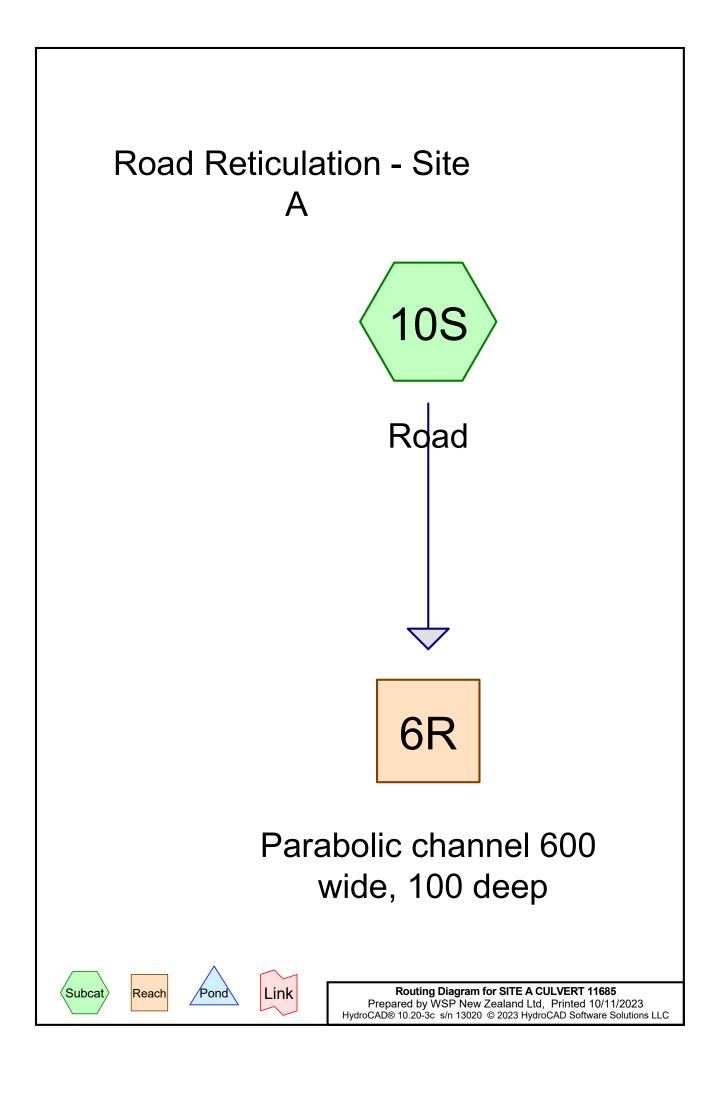
Runoff = 0.0992 m³/s @ 0.17 hrs, Volume= 0.119 Ml, Depth= 40 mm Routed to Pond Culvert-1 : Culvert 01

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25




Summary for Pond Culvert-1: Culvert 01

Inflow Area = 3.8000 ha. 7.89% Impervious, Inflow Depth = 19 mm for 100-Year 2031-2050 event Inflow 0.33 hrs, Volume= = 0.6033 m³/s @ 0.730 MI 0.33 hrs, Volume= = 0.730 MI, Atten= 0%, Lag= 0.0 min Outflow 0.6033 m³/s @ 0.6033 m³/s @ 0.33 hrs, Volume= 0.730 MI Primary = Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 0.570 m @ 0.33 hrs Flood Elev= 2.900 m Device Routing Invert **Outlet Devices** 0.000 m 900 mm Round Culvert L= 150.00 m Ke= 0.500 #1 Primary Inlet / Outlet Invert= 0.000 m / -30.000 m S= 0.2000 m/m Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 0.636 m²

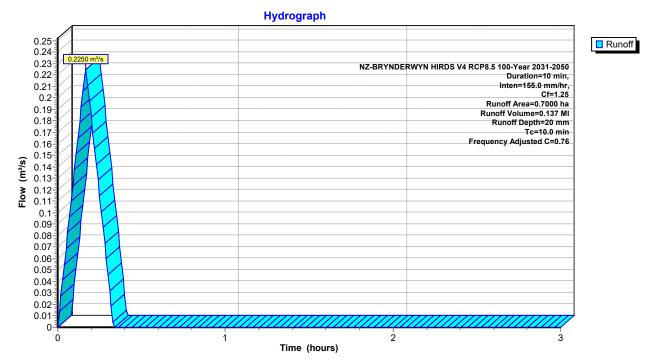

Primary OutFlow Max=0.6019 m³/s @ 0.33 hrs HW=0.570 m (Free Discharge) **1=Culvert** (Inlet Controls 0.6019 m³/s @ 1.42 m/s)

Pond Culvert-1: Culvert 01

Pond Culvert-1: Culvert 01

Summary for Subcatchment 10S: Road

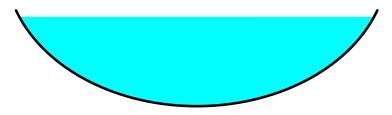
Runoff = 0.2250 m³/s @ 0.17 hrs, Volume= 0.137 Ml, Depth= 20 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep

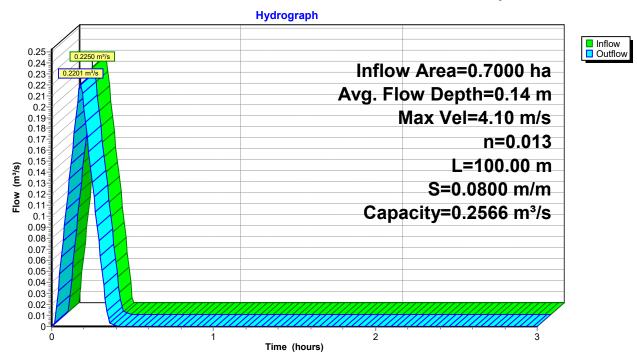

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

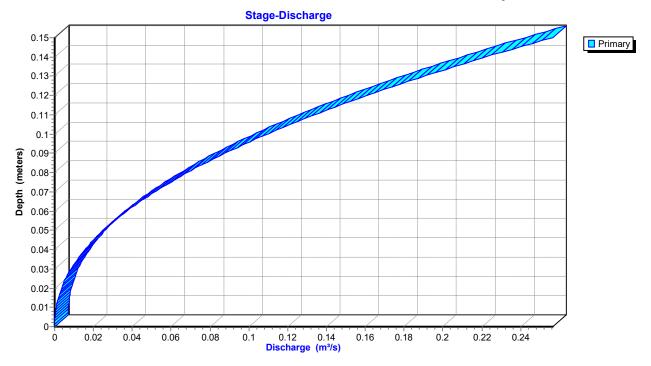
Area (ha	ı) C	C Adj	Descri	Description					
0.300	0 0.95	5	road ca	road catchment					
0.400	0 0.35	5	cut fac	cut face					
0.700	0 0.61	1 0.76	Weigh	Weighted Average, Frequency Adjusted					
0.400	0		57.14%	57.14% Pervious Area					
0.300	0		42.86% Impervious Area						
	Tc Length Slope Velocity Capacity Description								
<u>(min) (m</u>	eters)	(m/m)	(m/sec)	n/sec) (m³/s)					

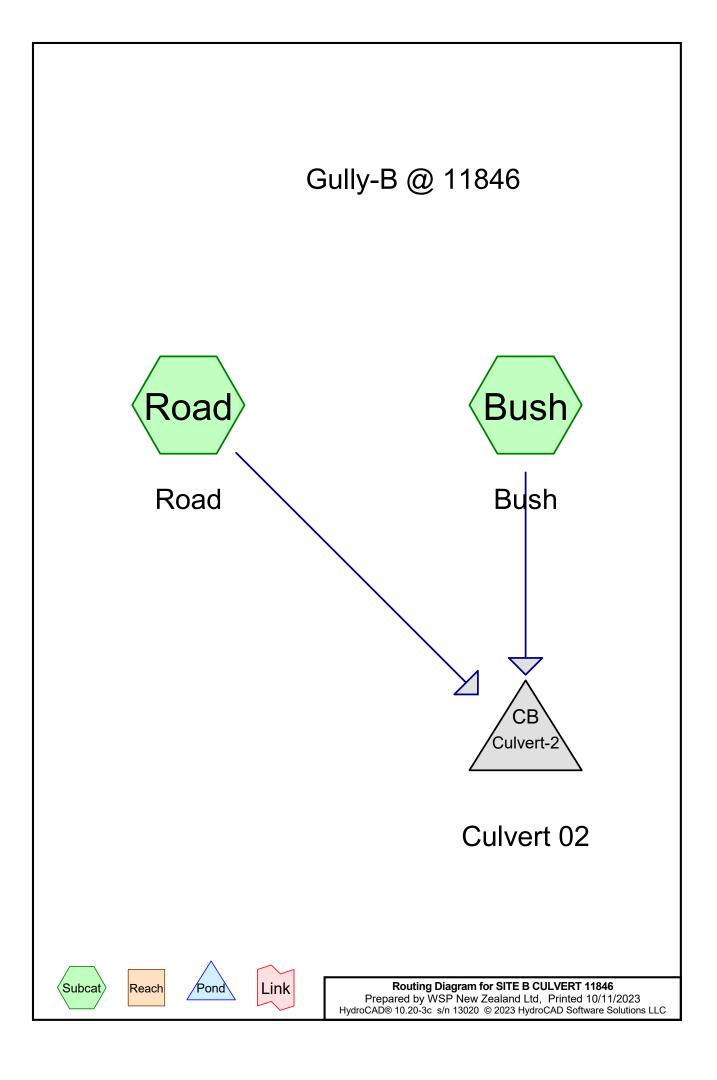
Direct Entry,

Subcatchment 10S: Road

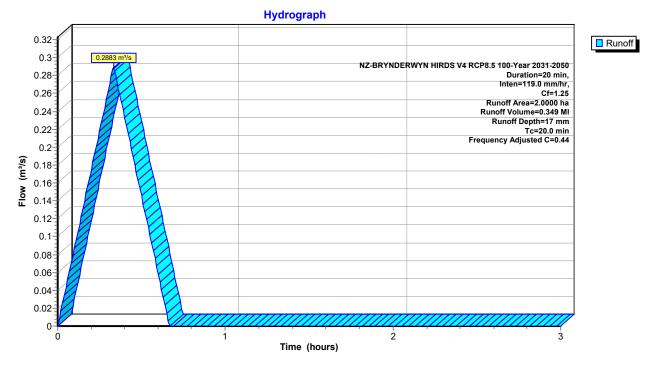

Summary for Reach 6R: Parabolic channel 600 wide, 100 deep


Inflow Area = 0.7000 ha, 42.86% Impervious, Inflow Depth = 20 mm for 100-Year 2031-2050 event Inflow = $0.2250 \text{ m}^3/\text{s}$ @ 0.17 hrs, Volume= 0.137 MIOutflow = $0.2201 \text{ m}^3/\text{s}$ @ 0.18 hrs, Volume= 0.137 MI, Atten= 2%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 4.10 m/s, Min. Travel Time= 0.4 min Avg. Velocity = 2.27 m/s, Avg. Travel Time= 0.7 min


Peak Storage= 5.4 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.14 m , Surface Width= 0.58 m Bank-Full Depth= 0.15 m Flow Area= 0.06 m², Capacity= 0.2566 m³/s

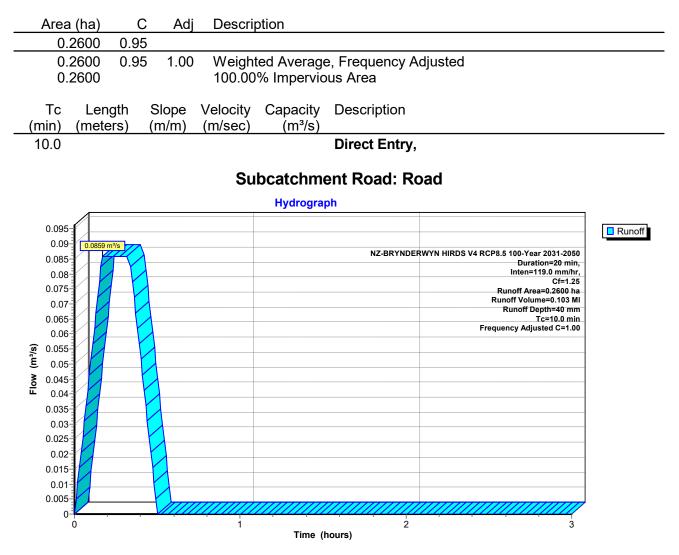
0.60 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m


Summary for Subcatchment Bush: Bush

Runoff = 0.2883 m³/s @ 0.33 hrs, Volume= 0.349 Ml, Depth= 17 mm Routed to Pond Culvert-2 : Culvert 02

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

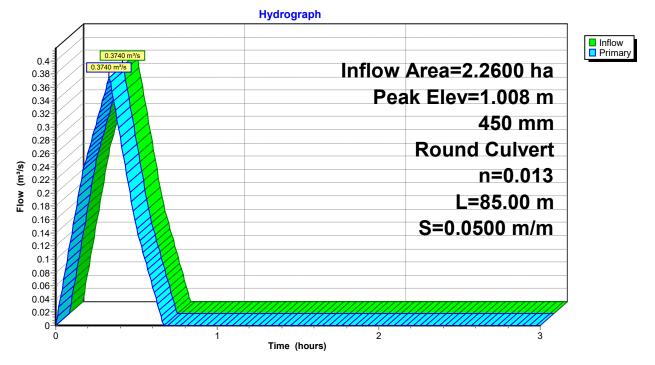
_	Area	a (ha)	С	Adj	Descri	ption							
_	2.	0000	0.35		mediur	medium soakage bush and scrub cover 0.25 + 0.1 for steep slope							
	2.	2.0000 0.35 0.44 Weighted Average, Frequency Adjusted											
	2.	0000			100.00	% Pervious	s Area						
_	Tc (min)	Len (mete	•	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description						
	20.0						Direct Entry,						

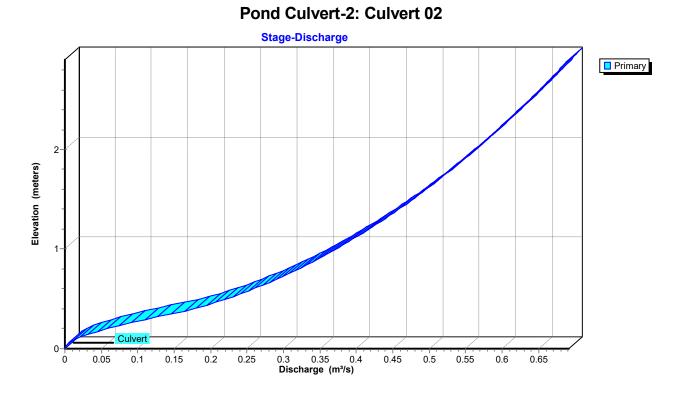

Subcatchment Bush: Bush

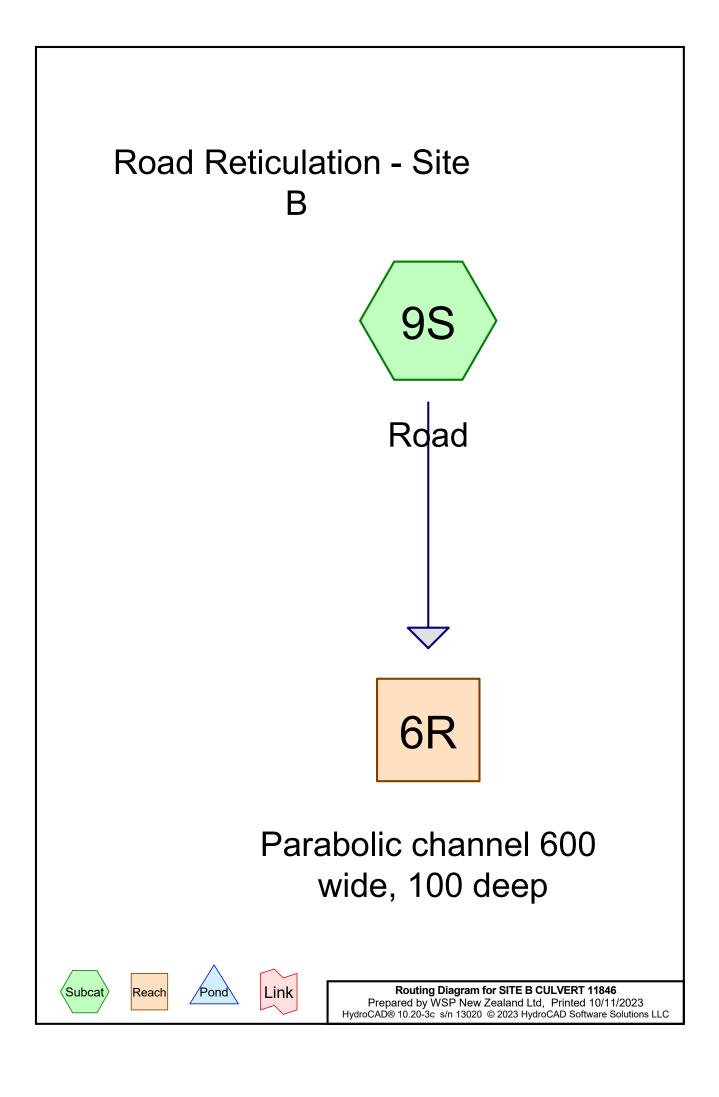
Summary for Subcatchment Road: Road

Runoff = 0.0859 m³/s @ 0.17 hrs, Volume= 0.103 Ml, Depth= 40 mm Routed to Pond Culvert-2 : Culvert 02

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25




Summary for Pond Culvert-2: Culvert 02

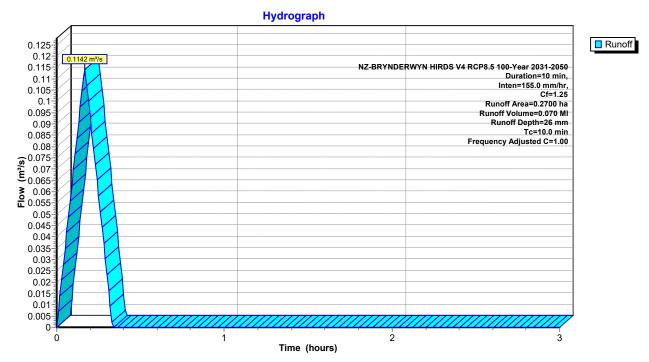

Inflow Area = 2.2600 ha, 11.50% Impervious, Inflow Depth = 20 mm for 100-Year 2031-2050 event = 0.33 hrs, Volume= Inflow 0.3740 m³/s @ 0.452 MI 0.33 hrs, Volume= = 0.452 MI, Atten= 0%, Lag= 0.0 min Outflow 0.3740 m³/s @ 0.3740 m³/s @ 0.33 hrs, Volume= 0.452 MI Primary = Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 1.008 m @ 0.33 hrs Flood Elev= 2.900 m Device Routing Invert **Outlet Devices 450 mm Round Culvert** L= 85.00 m Ke= 0.500 #1 Primary 0.000 m Inlet / Outlet Invert= 0.000 m / -4.250 m S= 0.0500 m/m Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.159 m²

Primary OutFlow Max=0.3734 m³/s @ 0.33 hrs HW=1.006 m (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.3734 m³/s @ 2.35 m/s)

Pond Culvert-2: Culvert 02

Summary for Subcatchment 9S: Road

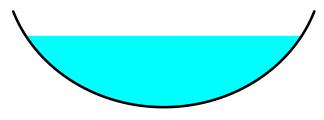
Runoff = 0.1142 m³/s @ 0.17 hrs, Volume= 0.070 Ml, Depth= 26 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep

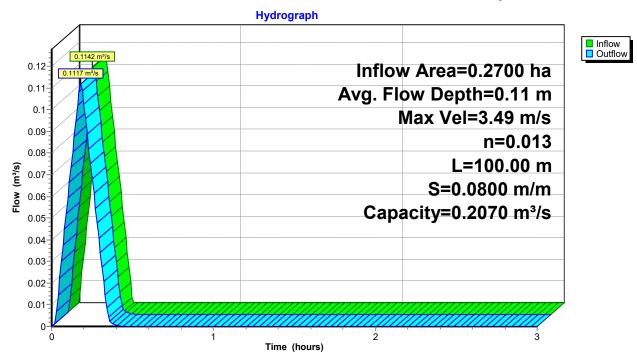

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

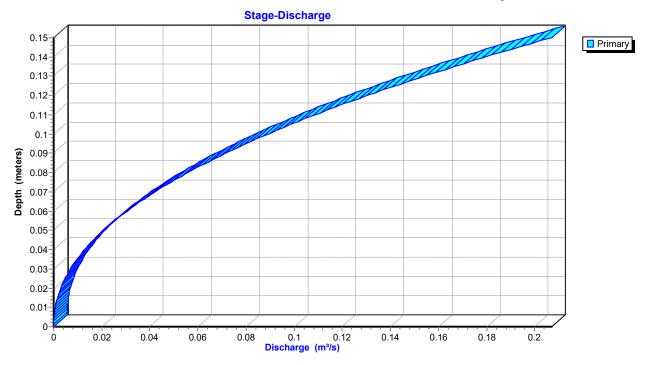
_	Area	a (ha)	C	; Adj	Descrip	otion					
	0.	2600	0.95	5	road ca	atchment					
_	0.	0100	0.35	5	cut fac	cut face					
	0.	2700	0.93	3 1.00	Weight	Weighted Average, Frequency Adjusted					
	0.	0100			3.70%	Pervious A	rea				
	0.2600			96.30%	6 Imperviou	is Area					
	Tc (min)	Len (mete	•	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description				

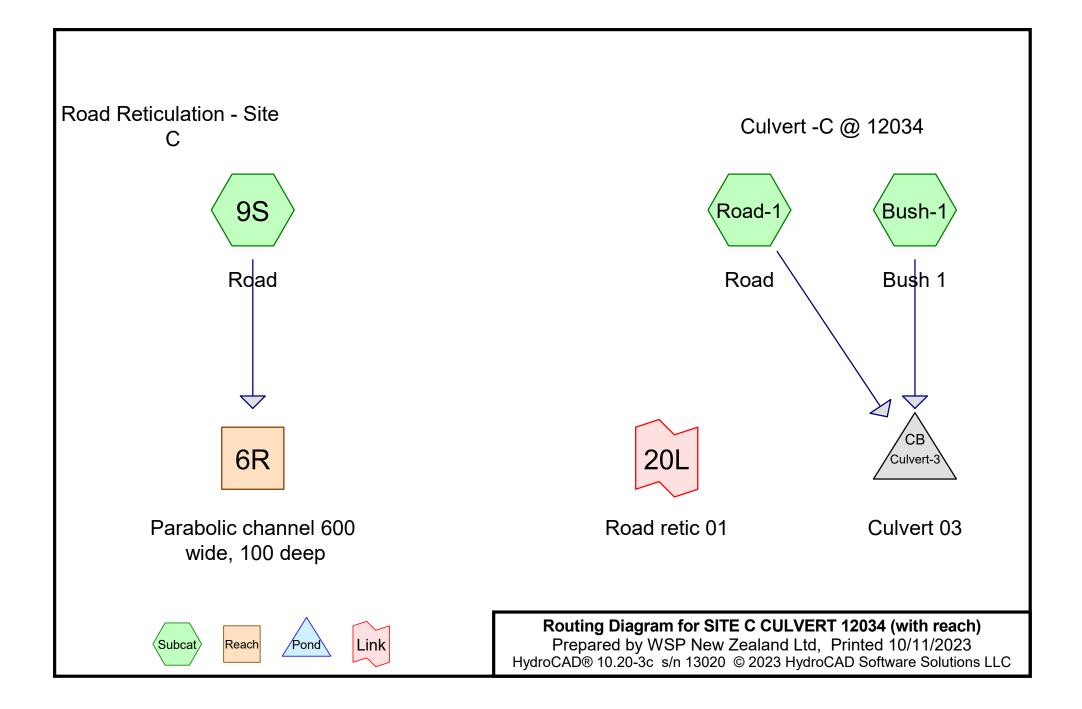
Direct Entry,

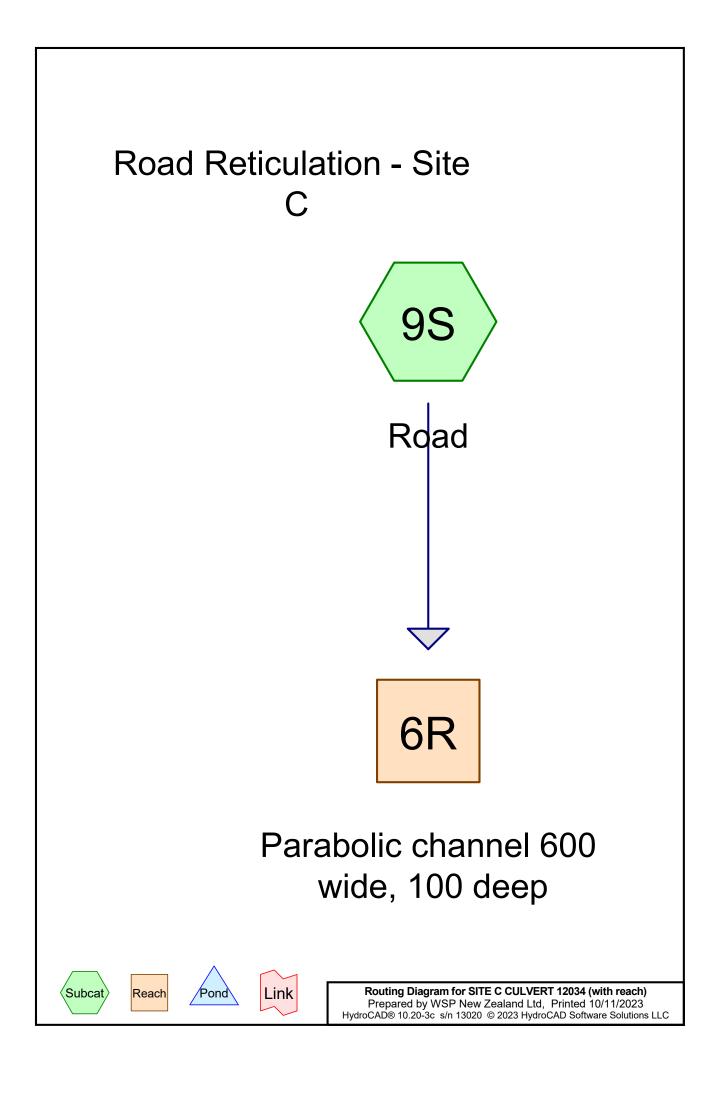
Subcatchment 9S: Road


Summary for Reach 6R: Parabolic channel 600 wide, 100 deep


Inflow Area = 0.2700 ha, 96.30% Impervious, Inflow Depth = 26 mm for 100-Year 2031-2050 event Inflow = $0.1142 \text{ m}^3/\text{s}$ @ 0.17 hrs, Volume= 0.070 MIOutflow = $0.1117 \text{ m}^3/\text{s}$ @ 0.18 hrs, Volume= 0.070 MI, Atten= 2%, Lag= 0.8 min

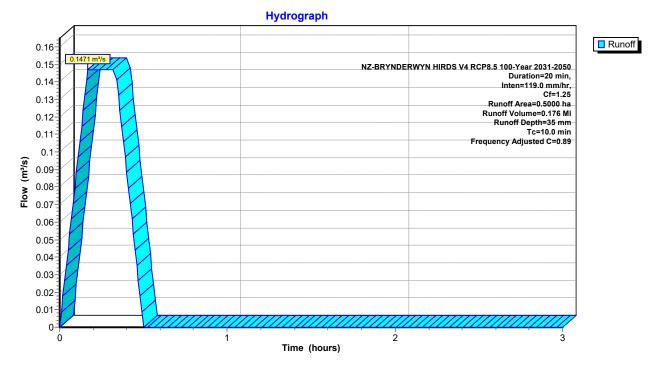

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.49 m/s, Min. Travel Time= 0.5 min Avg. Velocity = 2.02 m/s, Avg. Travel Time= 0.8 min


Peak Storage= 3.2 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.11 m , Surface Width= 0.43 m Bank-Full Depth= 0.15 m Flow Area= 0.05 m², Capacity= 0.2070 m³/s


0.50 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m

Summary for Subcatchment 9S: Road

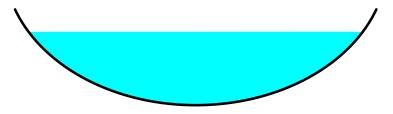
Runoff = 0.1471 m³/s @ 0.17 hrs, Volume= 0.176 Ml, Depth= 35 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

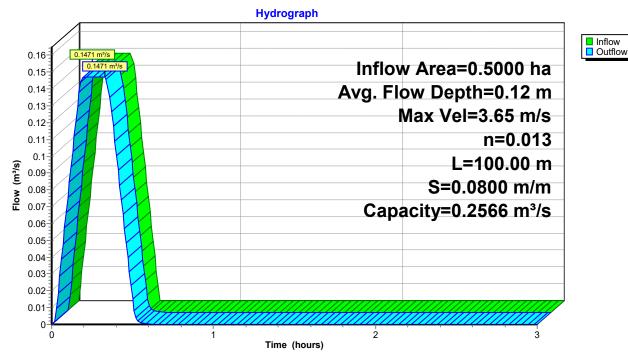
Are	ea (ha)	С	Adj	Description							
(0.3000	0.95		road ca	road catchment						
(0.2000	0.35		cut face	cut face						
(0.5000	0.71	0.89	Weight	Weighted Average, Frequency Adjusted						
(0.2000				40.00% Pervious Area						
(0.3000			60.00% Impervious Area							
Tc	Leng	gth S	Slope	Velocity Capacity Description							
(min)	(mete	ers) (m/m)	(m/sec) (m ³ /s)							

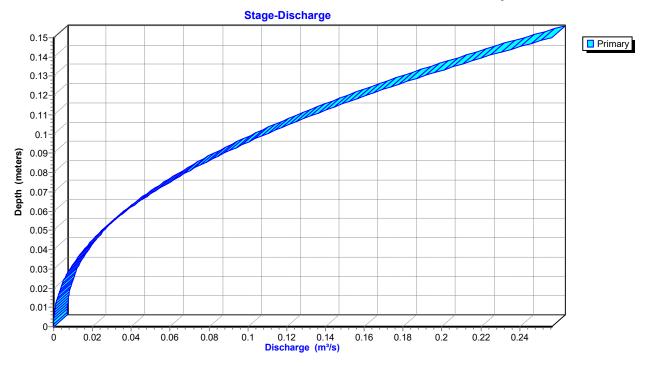
Direct Entry,

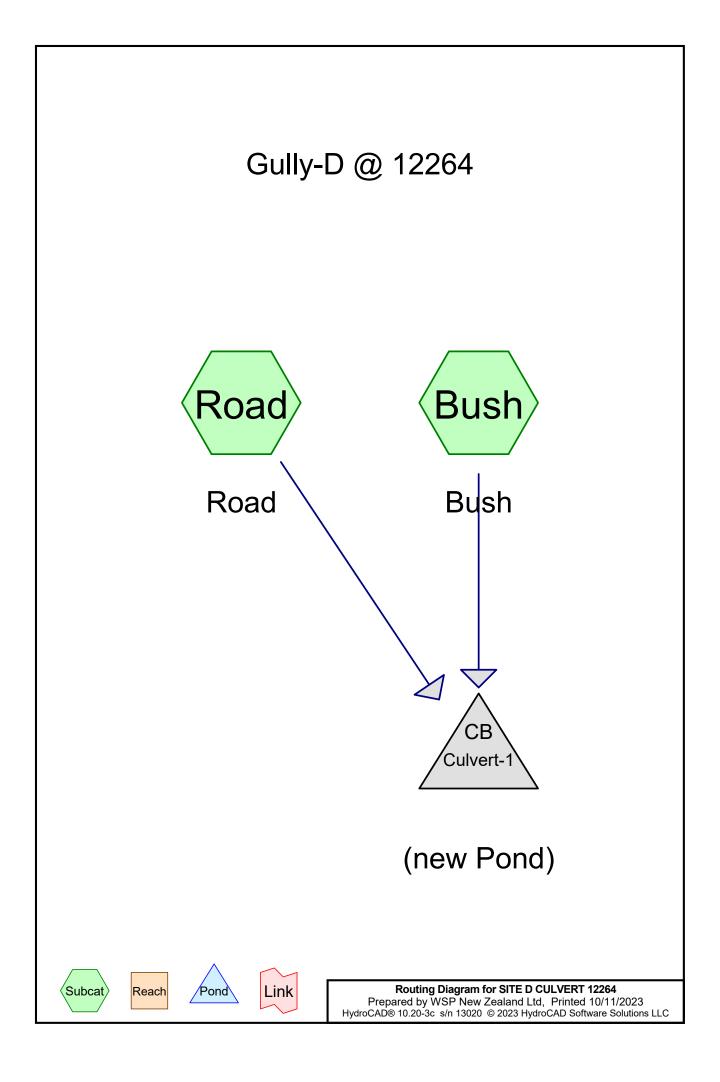
Subcatchment 9S: Road

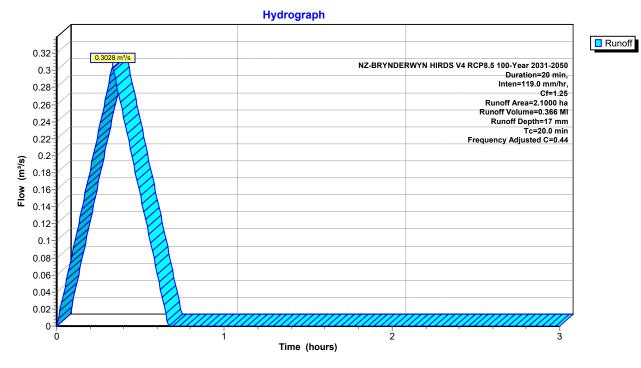

Summary for Reach 6R: Parabolic channel 600 wide, 100 deep

Inflow Area = 0.5000 ha, 60.00% Impervious, Inflow Depth = 35 mm for 100-Year 2031-2050 event Inflow = $0.1471 \text{ m}^3/\text{s}$ @ 0.17 hrs, Volume= 0.176 MIOutflow = $0.1471 \text{ m}^3/\text{s}$ @ 0.33 hrs, Volume= 0.176 MI, Atten= 0%, Lag= 9.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.65 m/s, Min. Travel Time= 0.5 min Avg. Velocity = 2.43 m/s, Avg. Travel Time= 0.7 min


Peak Storage= 4.0 m³ @ 0.33 hrs Average Depth at Peak Storage= 0.12 m , Surface Width= 0.53 m Bank-Full Depth= 0.15 m Flow Area= 0.06 m², Capacity= 0.2566 m³/s

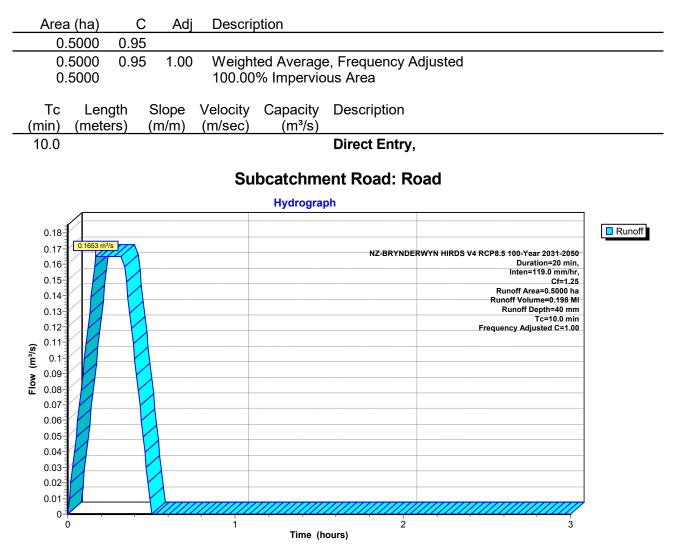

0.60 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m


Summary for Subcatchment Bush: Bush

Runoff = 0.3028 m³/s @ 0.33 hrs, Volume= 0.366 Ml, Depth= 17 mm Routed to Pond Culvert-1 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

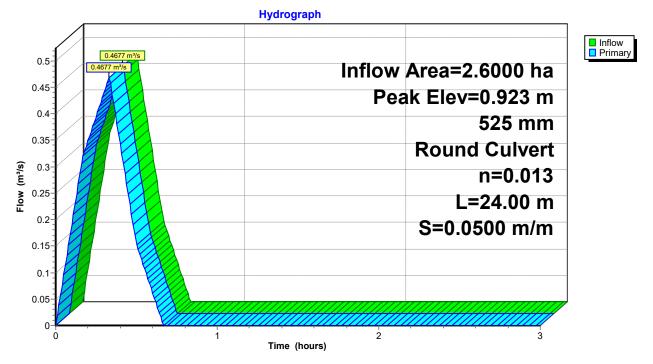
 Area	a (ha)	С	Adj	Descri	ption						
 2.	1000	0.35		mediur	medium soakage bush and scrub cover 0.25 + 0.1 for steep slope						
	1000	0.35	0.44			e, Frequency Adjusted					
2.	1000			100.00	% Pervious	s Area					
Tc (min)	Len (mete	•	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description					
20.0						Direct Entry,					

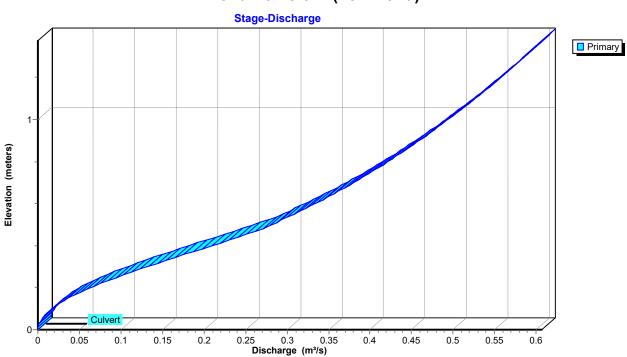

Subcatchment Bush: Bush

Summary for Subcatchment Road: Road

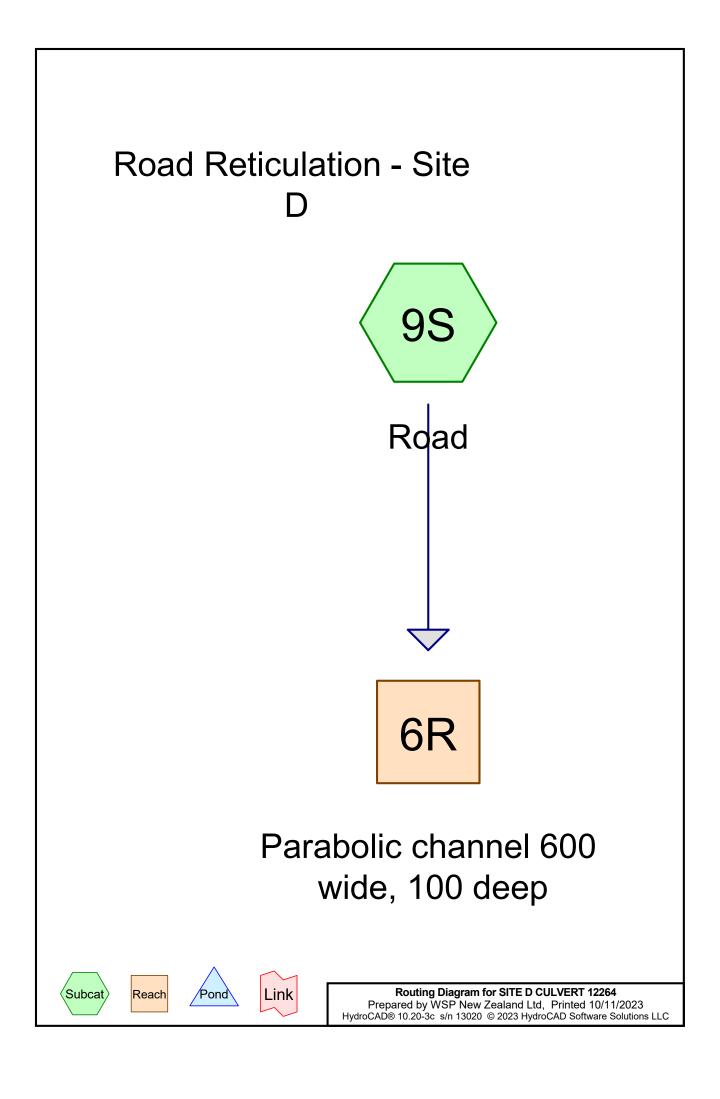
Runoff = 0.1653 m³/s @ 0.17 hrs, Volume= 0.198 Ml, Depth= 40 mm Routed to Pond Culvert-1 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25




Summary for Pond Culvert-1: (new Pond)

22 mm for 100-Year 2031-2050 event Inflow Area = 2.6000 ha, 19.23% Impervious, Inflow Depth = Inflow 0.33 hrs, Volume= = 0.4677 m³/s @ 0.565 MI 0.33 hrs, Volume= = 0.4677 m³/s @ 0.565 MI, Atten= 0%, Lag= 0.0 min Outflow 0.4677 m³/s @ 0.33 hrs, Volume= 0.565 MI Primary = Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 0.923 m @ 0.33 hrs Flood Elev= 1.375 m Device Routing Invert **Outlet Devices** 0.000 m 525 mm Round Culvert L= 24.00 m Ke= 0.500 #1 Primary Inlet / Outlet Invert= 0.000 m / -1.200 m S= 0.0500 m/m Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.216 m²


Primary OutFlow Max=0.4675 m³/s @ 0.33 hrs HW=0.923 m (Free Discharge) **1=Culvert** (Inlet Controls 0.4675 m³/s @ 2.16 m/s)

Pond Culvert-1: (new Pond)

Pond Culvert-1: (new Pond)

Summary for Subcatchment 9S: Road

Runoff = 0.2902 m³/s @ 0.17 hrs, Volume= 0.177 Ml, Depth= 25 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

_	Area	a (ha)	С	; Adj	Descrip	Description					
	0.	5000	0.95	;	road ca	road catchment					
_	0.	2000	0.35		cut fac	cut face					
	0.7000 0.78 0.98 Weighted Average, Fre						e, Frequency Adjusted				
0.2000 28.57% Pervious Area						Area					
	0.5000				71.43%	71.43% Impervious Area					
	Тс	Len	gth	Slope	Velocity	Capacity	Description				
_	(min)	(mete	ers)	(m/m)	(m/sec)	(m³/s)					

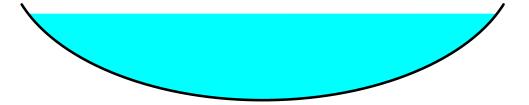
10.0

Direct Entry,

Subcatchment 9S: Road

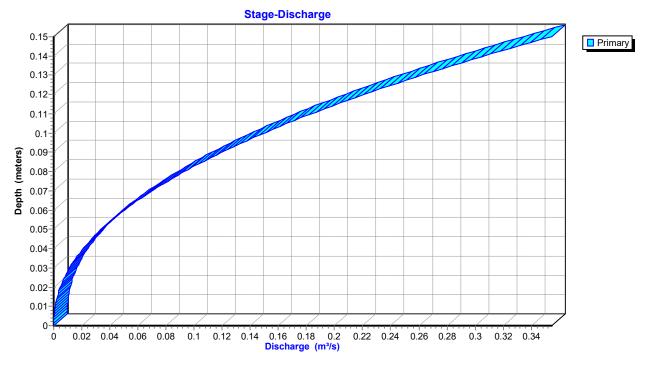
Summary for Reach 6R: Parabolic channel 600 wide, 100 deep

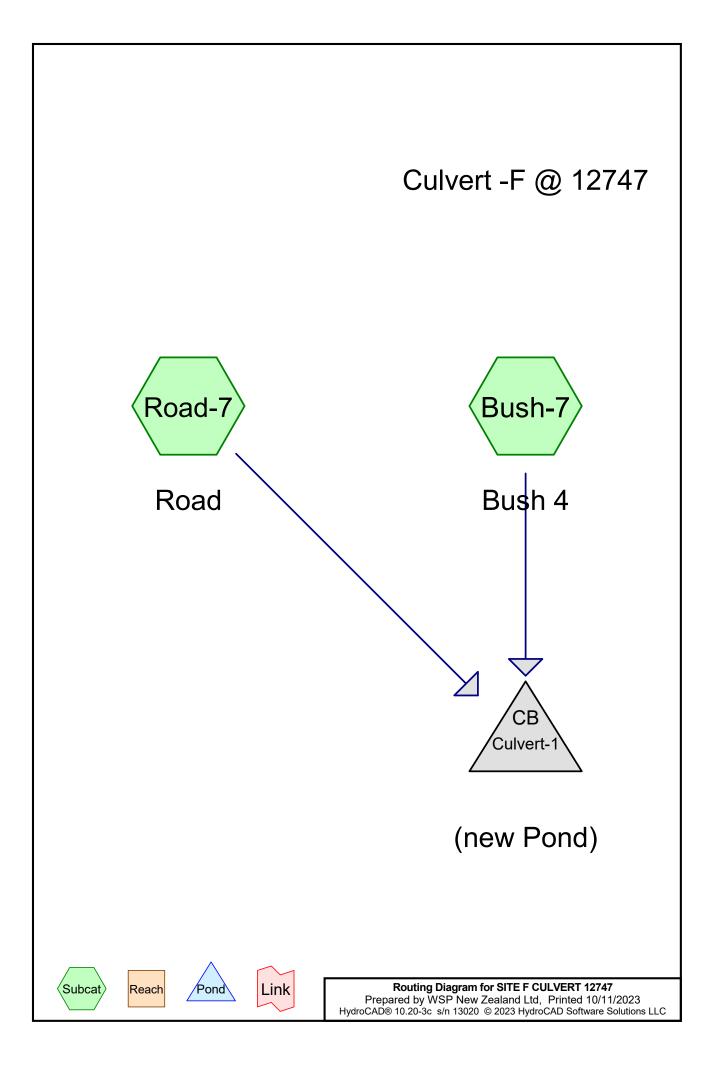
 Inflow Area =
 0.7000 ha, 71.43% Impervious, Inflow Depth =
 25 mm
 for 100-Year 2031-2050 event


 Inflow =
 0.2902 m³/s @
 0.17 hrs, Volume=
 0.177 MI

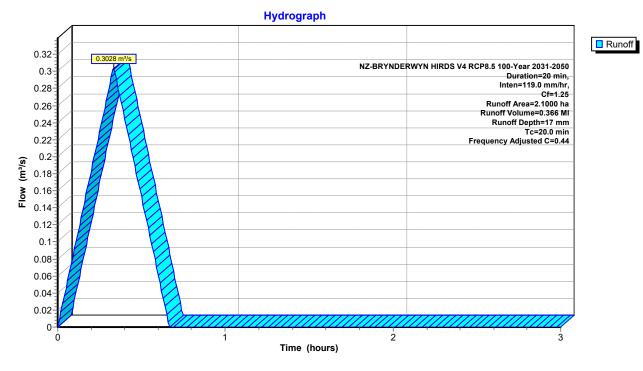
 Outflow =
 0.2839 m³/s @
 0.18 hrs, Volume=
 0.177 MI, Atten= 2%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 4.16 m/s, Min. Travel Time= 0.4 min Avg. Velocity = 2.18 m/s, Avg. Travel Time= 0.8 min


Peak Storage= 6.9 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.14 m , Surface Width= 0.76 m Bank-Full Depth= 0.15 m Flow Area= 0.08 m², Capacity= 0.3547 m³/s


0.80 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m

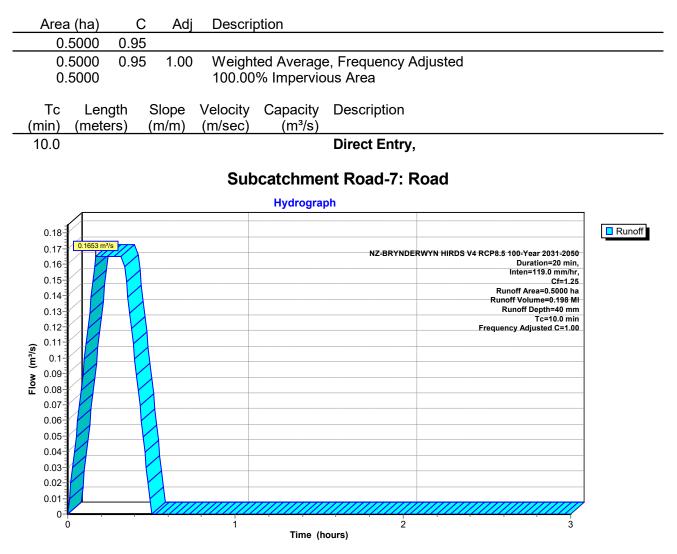
Hydrograph Inflow
Outflow 0.32 Inflow Area=0.7000 ha 0.3 0.2 0.28 Avg. Flow Depth=0.14 m 0.26 Max Vel=4.16 m/s 0.24 0.22 n=0.013 0.2 L=100.00 m ⁼low (m³/s 0.18 S=0.0800 m/m 0.16 0.14 Capacity=0.3547 m³/s 0.12 0.1 0.08 0.06 0.04 0.02 0 1 Ż 3 Time (hours)


Summary for Subcatchment Bush-7: Bush 4

Runoff = 0.3028 m³/s @ 0.33 hrs, Volume= 0.366 Ml, Depth= 17 mm Routed to Pond Culvert-1 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

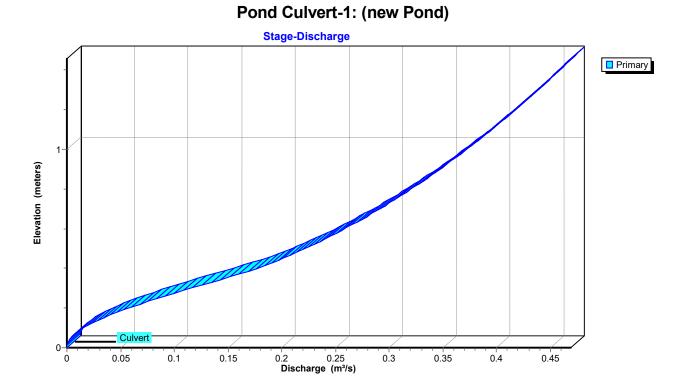
 Area	ı (ha)	С	Adj	Descri	otion							
2.	1000	0.35		mediur	medium soakage bush and scrub cover 0.25 + 0.1 for steep slope							
	.1000 0.35 0.44 Weighted Average, Frequency Adjusted											
2.	1000			100.00	% Pervious	s Area						
Тс	Leng	gth	Slope	Velocity	Capacity	Description						
 (min)	(mete	rs)	(m/m)	(m/sec)	(m³/s)	·						
20.0						Direct Entry,						

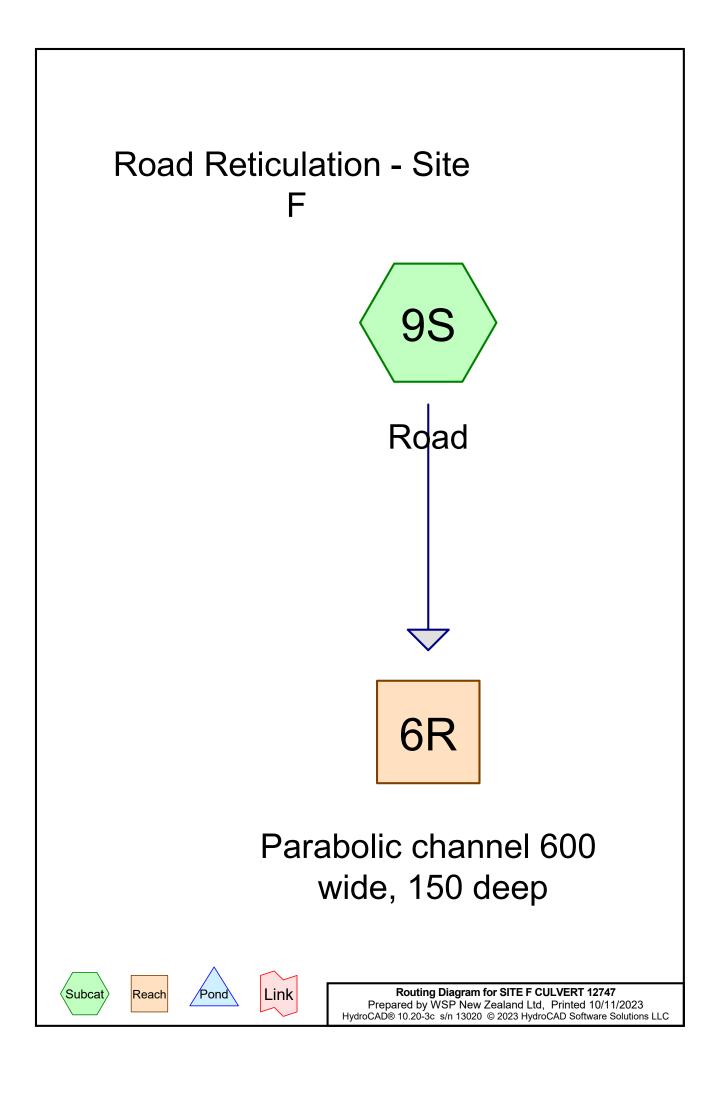

Subcatchment Bush-7: Bush 4

Summary for Subcatchment Road-7: Road

Runoff = 0.1653 m³/s @ 0.17 hrs, Volume= 0.198 Ml, Depth= 40 mm Routed to Pond Culvert-1 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25


Summary for Pond Culvert-1: (new Pond)


Inflow Area = 2.6000 ha, 19.23% Impervious, Inflow Depth = 22 mm for 100-Year 2031-2050 event 0.33 hrs, Volume= Inflow = 0.4677 m³/s @ 0.565 MI 0.33 hrs, Volume= = 0.4677 m³/s @ 0.565 MI, Atten= 0%, Lag= 0.0 min Outflow 0.4677 m³/s @ 0.33 hrs, Volume= 0.565 MI Primary = Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 1.449 m @ 0.33 hrs Flood Elev= 1.375 m Device Routing Invert **Outlet Devices 450 mm Round Culvert** L= 80.00 m Ke= 0.500 #1 Primary 0.000 m Inlet / Outlet Invert= 0.000 m / -4.000 m S= 0.0500 m/m Cc= 0.900 n= 0.013, Flow Area= 0.159 m²

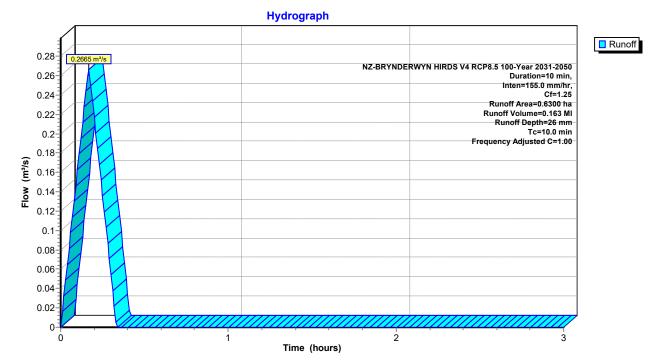
Primary OutFlow Max=0.4675 m³/s @ 0.33 hrs HW=1.448 m (Free Discharge) -1=Culvert (Inlet Controls 0.4675 m³/s @ 2.94 m/s)

Hydrograph Inflow Primary 0.46 0.5 Inflow Area=2.6000 ha 0.45 Peak Elev=1.449 m 0.4 450 mm 0.35 Round Culvert 0.3 Flow (m³/s) n=0.013 0.25 L=80.00 m 0.2 S=0.0500 m/m 0.15 0.1 0.05 0-1 ż Time (hours)

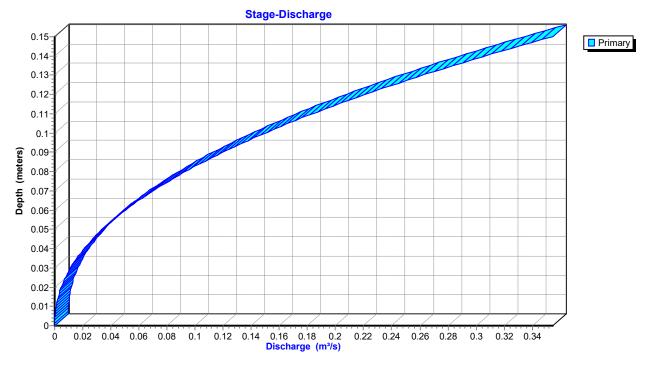
Pond Culvert-1: (new Pond)

Summary for Subcatchment 9S: Road

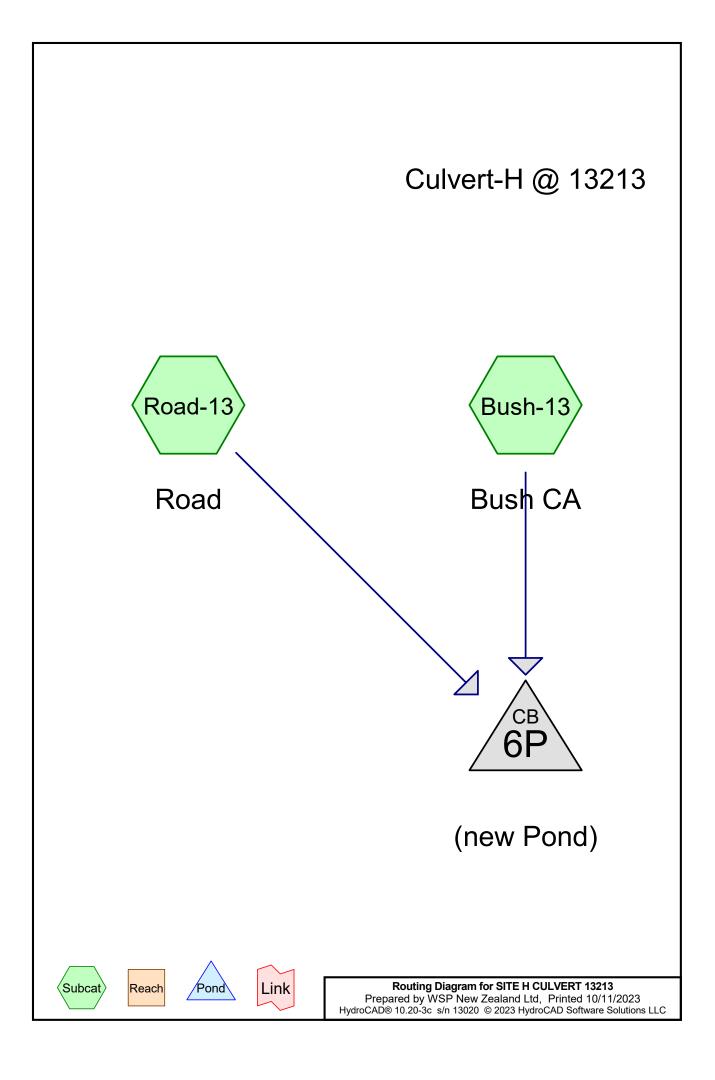
Runoff = 0.2665 m³/s @ 0.17 hrs, Volume= 0.163 Ml, Depth= 26 mm Routed to Reach 6R : Parabolic channel 600 wide, 150 deep


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

Area	(ha)	С	Adj	Descri	ption					
0.	5000	0.95		road ca	oad catchment					
0.1	1300	0.35		cut fac	cut face					
0.0	6300	0.83	1.00	Weigh	ted Average	e, Frequency Adjusted				
0.	0.1300 20.63% Pervious Área									
0.	5000			79.37%	6 Imperviou	us Area				
Tc	Leng	gth	Slope	Velocity	Capacity	Description				
(min)	(mete	rs)	(m/m)	(m/sec)	(m³/s)					


Direct Entry,

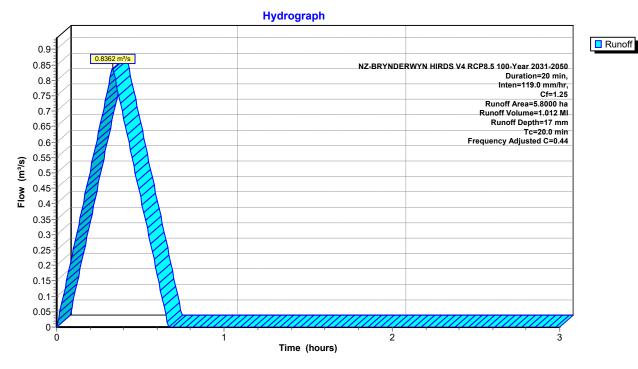
Subcatchment 9S: Road



Summary for Reach 6R: Parabolic channel 600 wide, 150 deep

Inflow Area = 0.6300 ha, 79.37% Impervious, Inflow Depth = 26 mm for 100-Year 2031-2050 event 0.17 hrs, Volume= Inflow = 0.2665 m³/s @ 0.163 MI 0.20 hrs. Volume= Outflow 0.163 MI, Atten= 7%, Lag= 2.2 min 0.2492 m³/s @ Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 4.00 m/s, Min. Travel Time= 1.4 min Avg. Velocity = 1.35 m/s, Avg. Travel Time= 4.3 min Peak Storage= 21.7 m³ @ 0.18 hrs Average Depth at Peak Storage= 0.13 m, Surface Width= 0.74 m Bank-Full Depth= 0.15 m Flow Area= 0.08 m², Capacity= 0.3547 m³/s 0.80 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 347.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 72.240 m Reach 6R: Parabolic channel 600 wide, 150 deep Hydrograph Inflow
Outflow 0.28 Inflow Area=0.6300 ha 0.26 Avg. Flow Depth=0.13 m 0 24 Max Vel=4.00 m/s 0.22 n=0.013 0.2 0.18 L=347.00 m Flow (m³/s) 0.16 S=0.0800 m/m 0.14 Capacity=0.3547 m³/s 0.12 0.1 0.08 0.06 0.04 0.02 0 1 Ż 3 Time (hours)

Reach 6R: Parabolic channel 600 wide, 150 deep


Summary for Subcatchment Bush-13: Bush CA

Runoff = 0.8362 m³/s @ 0.33 hrs, Volume= 1.012 Ml, Depth= 17 mm Routed to Pond 6P : (new Pond)

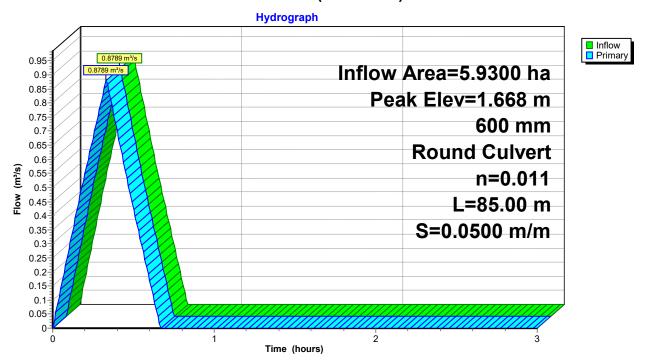
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

 Area	a (ha)	С	Adj	Descri	ption	
5.	8000	0.35		mediur	n soakage l	bush and scrub cover 0.25 + 0.1 for steep slope
-	8000	0.35	0.44			e, Frequency Adjusted
5.	8000			100.00	% Pervious	s Area
Тс	Leng	ath	Slope	Velocity	Capacity	Description
 (min)	(mete		(m/m)	(m/sec)	(m³/s)	·
20.0						Direct Entry,

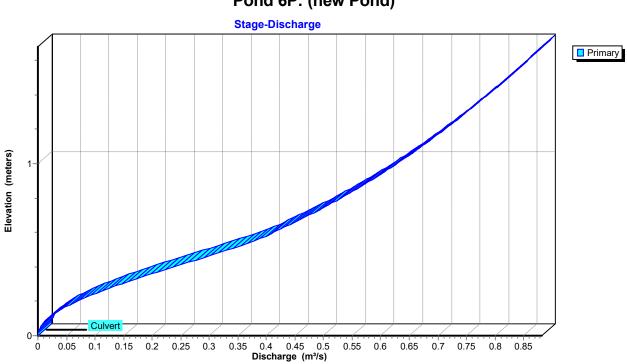
Subcatchment Bush-13: Bush CA

Summary for Subcatchment Road-13: Road

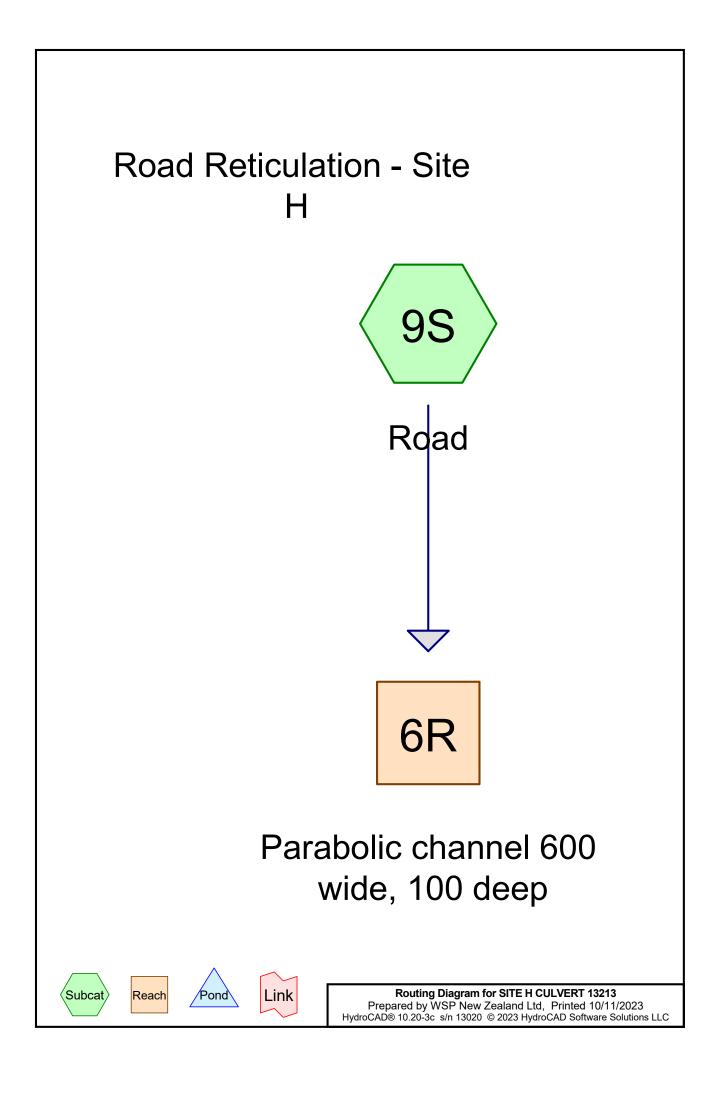
Runoff = 0.0430 m³/s @ 0.17 hrs, Volume= 0.052 Ml, Depth= 40 mm Routed to Pond 6P : (new Pond)


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

	a (ha) .1300 0.	<u>C A</u>	lj Descr	ption			
0.		. <u>95</u> .95 1.0		ited Average)% Impervic	e, Frequency / ous Area	Adjusted	
Tc (min)	Length (meters)	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description		
10.0					Direct Entry	3	
			Sub	catchmer	nt Road-13:	Road	
	/			Hydrogra	ph		1
0.048 0.046 0.044 0.042	0.0430 m³/s				NZ-BRYND	ERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min,	Runoff
0.04 0.038 0.036 0.034 0.032						Inten=119.0 mm/hr, Cf=1.25 Runoff Area=0.1300 ha Runoff Volume=0.052 MI Runoff Depth=40 mm Tc=10.0 min	
0.03						Frequency Adjusted C=1.00	
(\$) 0.028 0.024 0.022 0.022 0.022							
0.018 0.016 0.014 0.012							
0.012 0.01 0.008 0.006							
0.004 0.002			///////////////////////////////////////				
C	0		1	Time (2 hours)	3	


Summary for Pond 6P: (new Pond)

Inflow Area = 5.9300 ha, 2.19% Impervious, Inflow Depth = 18 mm for 100-Year 2031-2050 event = 0.33 hrs, Volume= Inflow 0.8789 m³/s @ 1.064 MI 0.33 hrs, Volume= = 1.064 MI, Atten= 0%, Lag= 0.0 min Outflow 0.8789 m³/s @ 0.8789 m³/s @ 0.33 hrs, Volume= 1.064 MI Primary = Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 1.668 m @ 0.33 hrs Flood Elev= 1.375 m Device Routing Invert **Outlet Devices** 600 mm Round Culvert L= 85.00 m Ke= 0.500 #1 Primary 0.000 m Inlet / Outlet Invert= 0.000 m / -4.250 m S= 0.0500 m/m Cc= 0.900 n= 0.011, Flow Area= 0.283 m²

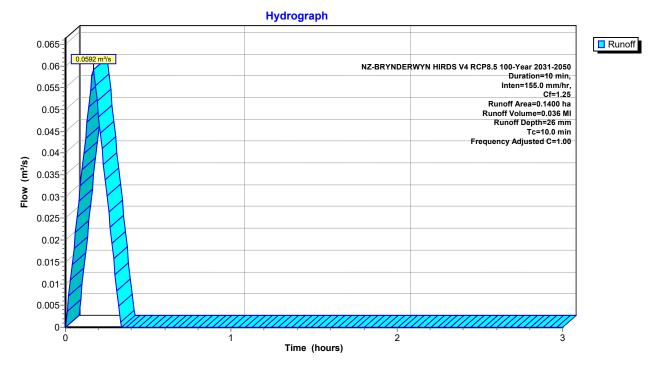

Primary OutFlow Max=0.8760 m³/s @ 0.33 hrs HW=1.659 m (Free Discharge) -1=Culvert (Inlet Controls 0.8760 m³/s @ 3.10 m/s)

Pond 6P: (new Pond)

Pond 6P: (new Pond)

Summary for Subcatchment 9S: Road

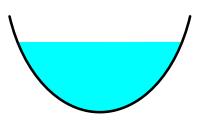
Runoff = 0.0592 m³/s @ 0.17 hrs, Volume= 0.036 Ml, Depth= 26 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

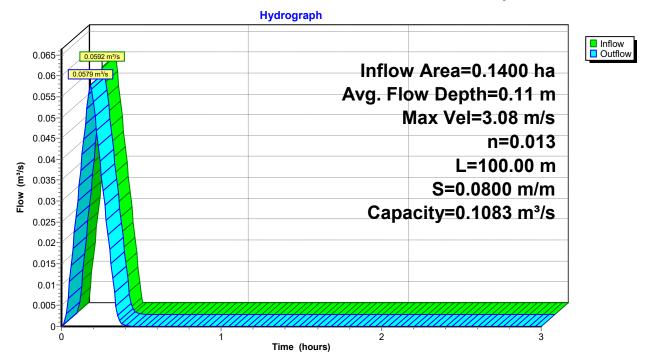
	Area (ł	na)	С	Ad	j Descri	ption					
	0.13	00	0.95	;	road c	atchment					
	0.01	00	0.35		cut fac	cut face					
	0.14	00	0.91	1.00) Weigh	ted Average	e, Frequency Adjusted				
	0.0100				7.14% Pervious Area						
	0.13	00			92.86%	6 Imperviou	is Area				
	Tc	Len	gth	Slope	Velocity	Capacity	Description				
(min) (r	nete	ers)	(m/m)	(m/sec)	(m³/s)					

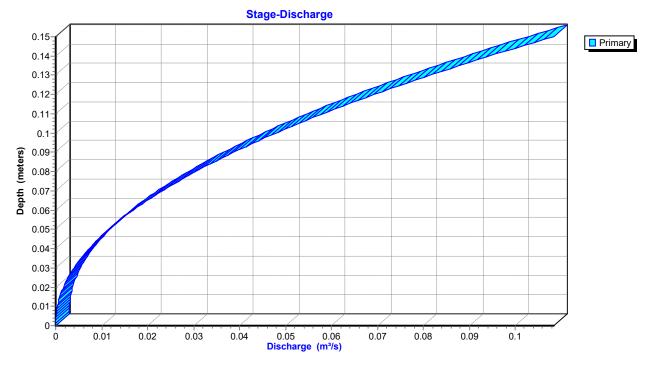
Direct Entry,

Subcatchment 9S: Road

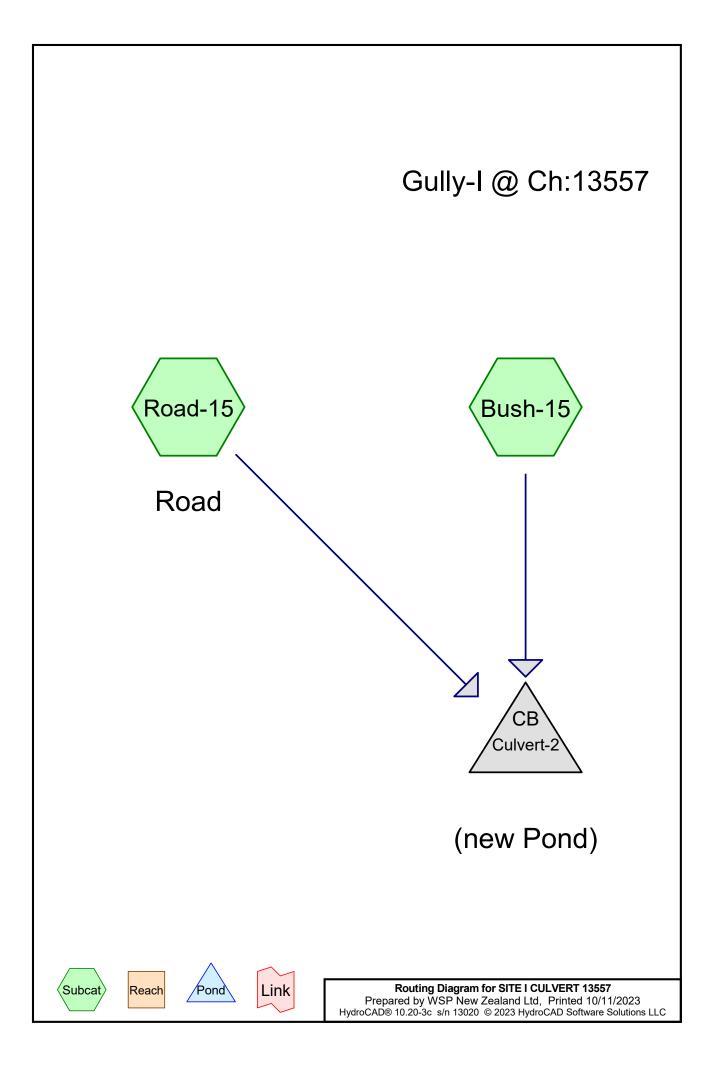

Summary for Reach 6R: Parabolic channel 600 wide, 100 deep

Inflow Area = 0.1400 ha, 92.86% Impervious, Inflow Depth = 26 mm for 100-Year 2031-2050 event Inflow = $0.0592 \text{ m}^3/\text{s}$ @ 0.17 hrs, Volume= 0.036 MIOutflow = $0.0579 \text{ m}^3/\text{s}$ @ 0.18 hrs, Volume= 0.036 MI, Atten= 2%, Lag= 0.9 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.08 m/s, Min. Travel Time= 0.5 min Avg. Velocity = 1.96 m/s, Avg. Travel Time= 0.8 min

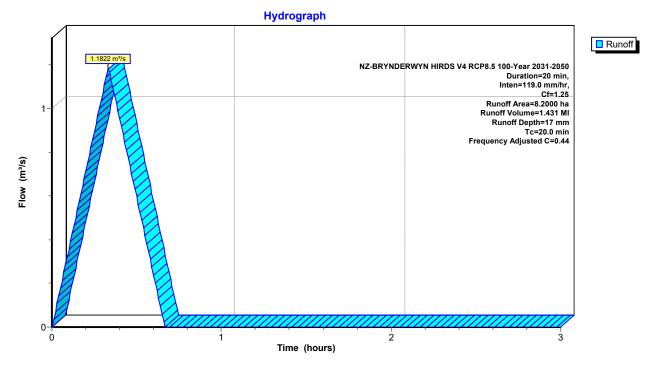

Peak Storage= 1.9 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.11 m , Surface Width= 0.26 m Bank-Full Depth= 0.15 m Flow Area= 0.03 m², Capacity= 0.1083 m³/s

 $0.30 \text{ m} \times 0.15 \text{ m}$ deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m



Reach 6R: Parabolic channel 600 wide, 100 deep

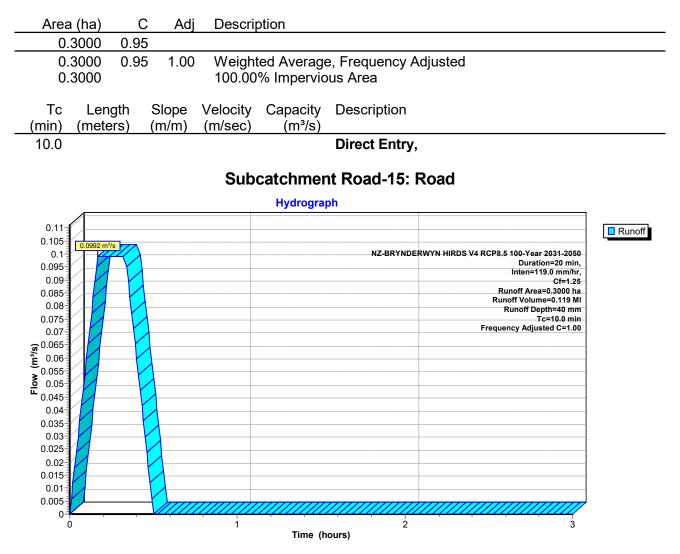
Reach 6R: Parabolic channel 600 wide, 100 deep


Summary for Subcatchment Bush-15:

Runoff = 1.1822 m³/s @ 0.33 hrs, Volume= 1.431 Ml, Depth= 17 mm Routed to Pond Culvert-2 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

Area (ł	ha) (C Adj	Descri	ption	
8.20	00 0.3	5	mediur	n soakage	bush and scrub cover 0.25 + 0.1 for steep slope
8.20		5 0.44	•	•	e, Frequency Adjusted
8.20	000		100.00	% Pervious	s Area
	Length meters)	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description
20.0					Direct Entry, Kerby-23.5 and Kri-4.6

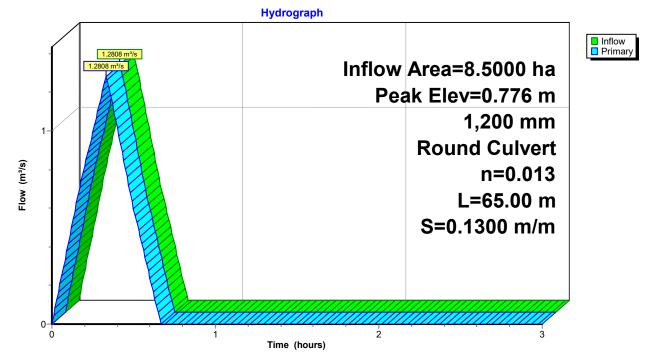

Subcatchment Bush-15:

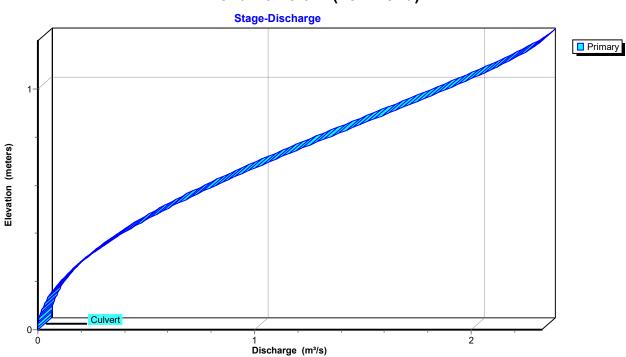
Summary for Subcatchment Road-15: Road

Runoff = 0.0992 m³/s @ 0.17 hrs, Volume= 0.119 Ml, Depth= 40 mm Routed to Pond Culvert-2 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

Summary for Pond Culvert-2: (new Pond)


Inflow Are	a =	8.5000 ha,	3.53% Impervious, Infle	ow Depth = 18 mn	n for	100-Year 2031-2050 event
Inflow	=	1.2808 m³/s @	0.33 hrs, Volume=	1.550 MI		
Outflow	=	1.2808 m³/s @	0.33 hrs, Volume=	1.550 MI, Atte	n= 0%,	Lag= 0.0 min
Primary	=	1.2808 m³/s @	0.33 hrs, Volume=	1.550 MI		


Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= $0.776 \text{ m} \oplus 0.33 \text{ hrs}$

Device	Routing	Invert	Outlet Devices		
#1	Primary	0.000 m	1,200 mm Round Culvert L= 65.00 m	Ke= 0.500	
			Inlet / Outlet Invert= 0.000 m / -8.450 m	S= 0.1300 m/m	Cc=
			0.900 n= 0.013, Flow Area= 1.131 m^2		

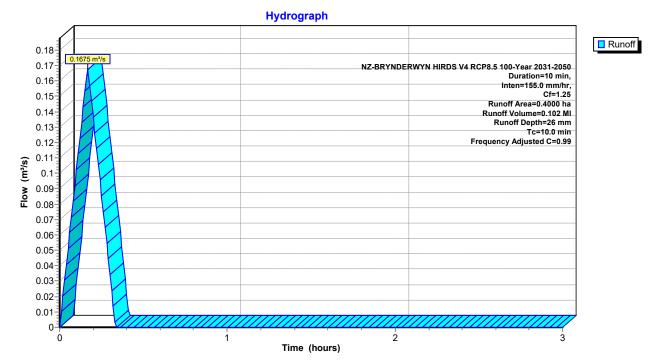
Primary OutFlow Max=1.2768 m³/s @ 0.33 hrs HW=0.775 m (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.2768 m³/s @ 1.65 m/s)

Pond Culvert-2: (new Pond)

Pond Culvert-2: (new Pond)

Summary for Subcatchment 9S: Road

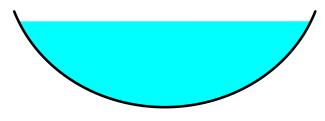
Runoff = 0.1675 m³/s @ 0.17 hrs, Volume= 0.102 Ml, Depth= 26 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep


Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

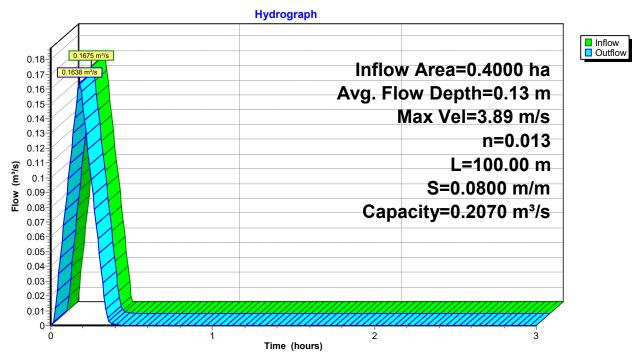
	Area (ha	ı) (C Ad	j Descri	ption					
	0.300	0 0.9	5	road c	road catchment					
	0.100	0 0.3	0	cut fac	cut face					
	0.400	0 0.7	9 0.99) Weigh	ted Average	e, Frequency Adjusted				
0.1000 25.00% Pervious Area										
	0.300	0		75.00%	6 Imperviou	is Area				
	Tc L	ength	Slope	Velocity	Capacity	Description				
(min) (m	eters)	(m/m)	(m/sec)	(m³/s)					

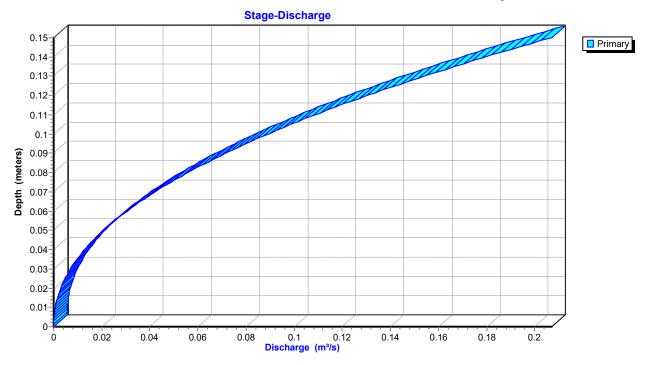
Direct Entry,

Subcatchment 9S: Road

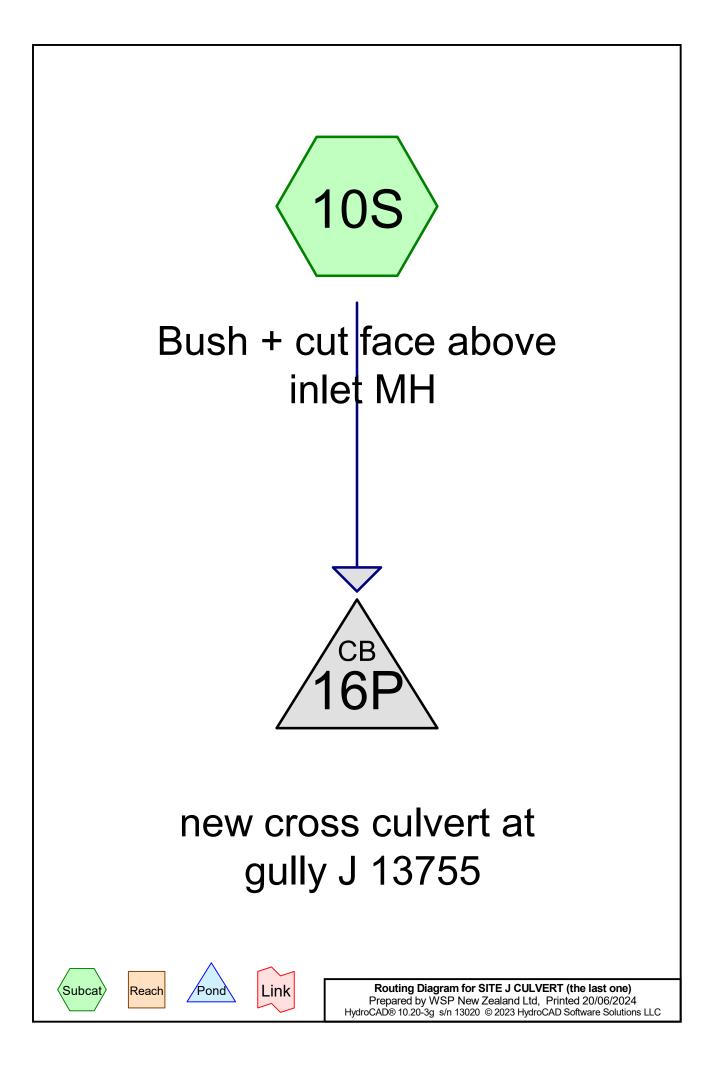

Summary for Reach 6R: Parabolic channel 600 wide, 100 deep

Inflow Area = 0.4000 ha, 75.00% Impervious, Inflow Depth = 26 mm for 100-Year 2031-2050 event Inflow = 0.1675 m³/s @ 0.17 hrs, Volume= 0.102 MI Outflow = 0.1638 m³/s @ 0.18 hrs, Volume= 0.102 MI, Atten= 2%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.89 m/s, Min. Travel Time= 0.4 min Avg. Velocity = 2.24 m/s, Avg. Travel Time= 0.7 min

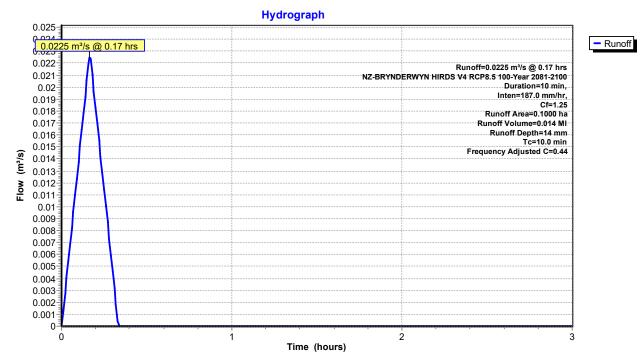

Peak Storage= 4.2 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.13 m , Surface Width= 0.47 m Bank-Full Depth= 0.15 m Flow Area= 0.05 m², Capacity= 0.2070 m³/s

0.50 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m



Reach 6R: Parabolic channel 600 wide, 100 deep

Reach 6R: Parabolic channel 600 wide, 100 deep


Summary for Subcatchment 10S: Bush + cut face above inlet MH

Runoff = 0.0225 m³/s @ 0.17 hrs, Volume= 0.014 Ml, Depth= 14 mm Routed to Pond 16P : new cross culvert at gully J 13755

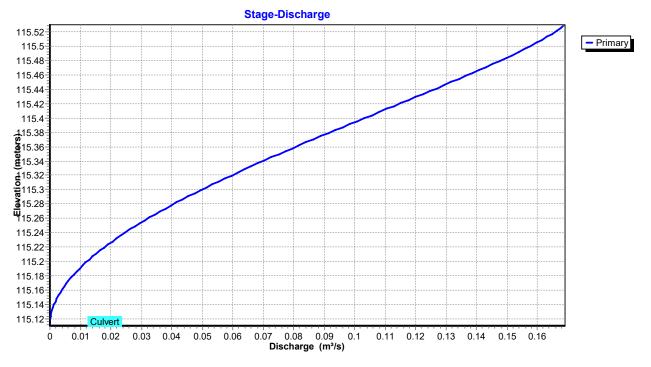
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2081-2100 Duration=10 min, Inten=187.0 mm/hr, Cf=1.25

 Area	a (ha)	С	Adj	Descrip	otion						
 0.	1000	0.35		bush +	bush + cut face						
	1000	0.35	0.44			e, Frequency Adjusted					
0.	1000			100.00	% Pervious	Area					
 Tc (min)	Len (mete	•	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description					
10.0						Direct Entry,					

Subcatchment 10S: Bush + cut face above inlet MH

Summary for Pond 16P: new cross culvert at gully J 13755

Inflow Area = 0.1000 ha, 0.00% Impervious, Inflow Depth = 14 mm for 100-Year 2081-2100 event Inflow 0.17 hrs, Volume= = 0.0225 m³/s @ 0.014 MI = 0.17 hrs, Volume= Outflow 0.014 MI, Atten= 0%, Lag= 0.0 min 0.0225 m³/s @ 0.0225 m³/s @ 0.17 hrs, Volume= 0.014 MI Primary =


Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 115.234 m @ 0.17 hrs

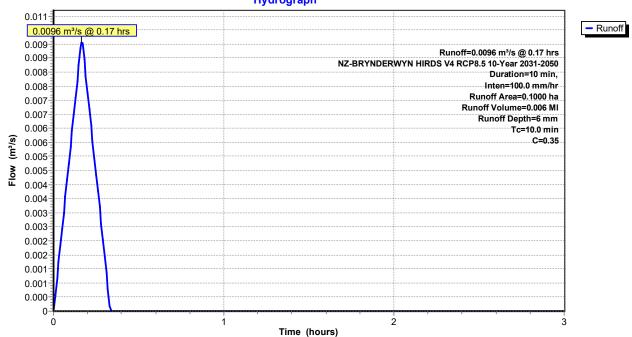
Device	Routing	Invert	Outlet Devices
#1	Primary	115.110 m	420 mm Round Culvert L= 12.80 m Ke= 0.500
	-		Inlet / Outlet Invert= 115.110 m / 113.958 m S= 0.0900 m/m Cc= 0.900 n= 0.013, Flow Area= 0.139 m ²

Primary OutFlow Max=0.0223 m³/s @ 0.17 hrs HW=115.233 m (Free Discharge) ←1=Culvert (Inlet Controls 0.0223 m³/s @ 0.66 m/s)

Hydrograph 0.025 0.024 5 m³/s @ 0.17 hrs - Inflow Primary 0.022 Inflow Area=0.1000 ha 0.021 0.02 Inflow=0.0225 m3/s @ 0.17 hrs 0.019-Primary=0.0225 m3/s @ 0.17 hrs 0.018 0.017-Peak Elev=115.234 m 0.016-420 mm 0.015 (% 0.014 0.013 **Round Culvert** Flow n=0.013 0.012 0.011 L=12.80 m 0.01 0.009 S=0.0900 m/m 0.008-0.007 0.006 0.005 0.004 0.003 0.002-0.001 0 Ż 0 1 3 Time (hours)

Pond 16P: new cross culvert at gully J 13755

Pond 16P: new cross culvert at gully J 13755


Summary for Subcatchment 10S: Bush + cut face above inlet MH

Runoff = 0.0096 m³/s @ 0.17 hrs, Volume= 0.006 MI, Depth= 6 mm Routed to Pond 16P : new cross culvert at gully J 13755

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 10-Year 2031-2050 Duration=10 min, Inten=100.0 mm/hr

Area	ı (ha)	С	Desc	cription		
0.	1000	0.35	bush	+ cut fac	е	
0.	1000		100.	00% Pervi	ious Area	
Tc _(min)	Leng (mete	0	Slope m/m)	Velocity (m/sec)	Capacity (m³/s)	Description
10.0						Direct Entry,

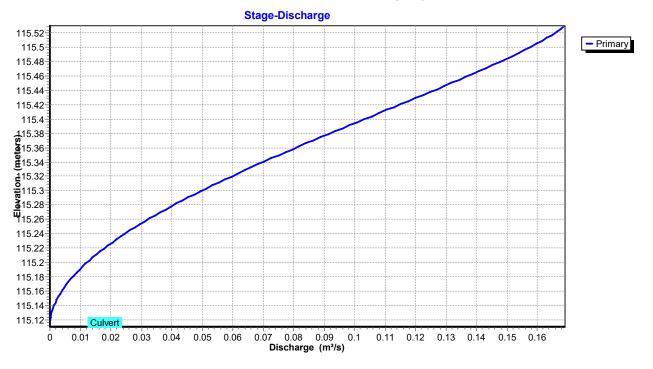
Subcatchment 10S: Bush + cut face above inlet MH

Hydrograph

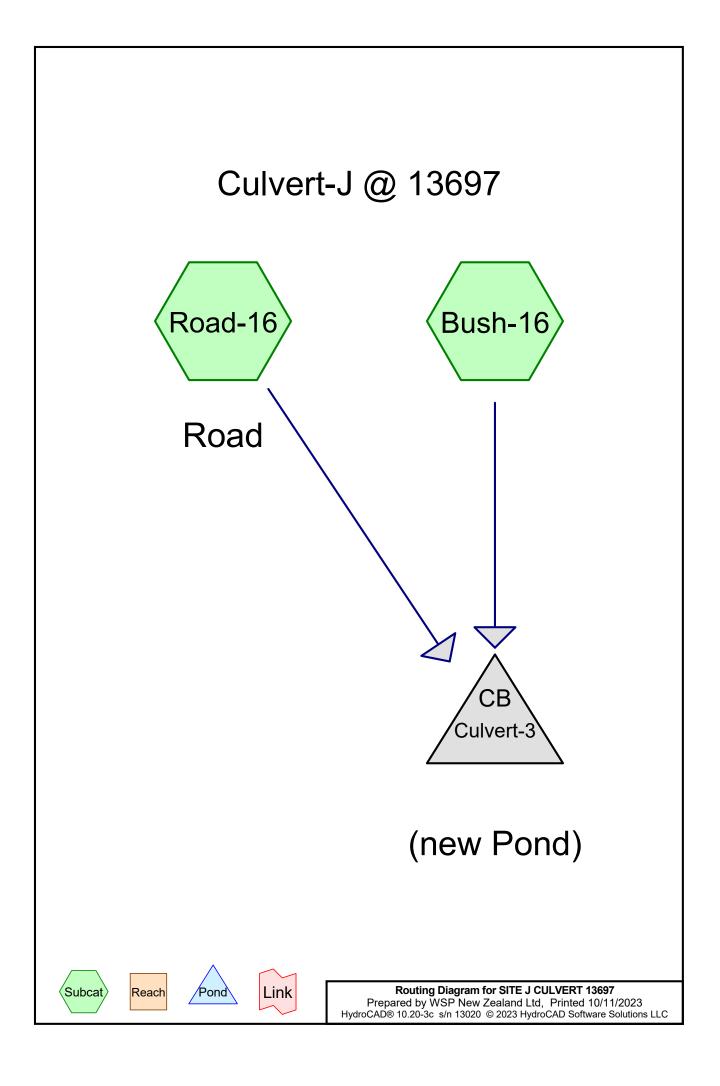
Summary for Pond 16P: new cross culvert at gully J 13755

Inflow Area =		0.1000 ha,	0.00% Impervious, Inflo	w Depth =	6 mm	for	10-Year 2031-2050 event
Inflow	=	0.0096 m³/s @	0.17 hrs, Volume=	0.006 MI			
Outflow	=	0.0096 m³/s @	0.17 hrs, Volume=	0.006 MI,	Atten= ()%,	Lag= 0.0 min
Primary	=	0.0096 m³/s @	0.17 hrs, Volume=	0.006 MI			

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 115.189 m @ 0.17 hrs


Device	Routing	Invert	Outlet Devices					
#1	Primary	115.110 m	420 mm Round Culvert L= 12.80 m Ke= 0.500					
			Inlet / Outlet Invert= 115.110 m / 113.958 m S= 0.0900 m/m Cc= 0.900 n= 0.013, Flow Area= 0.139 m ²					

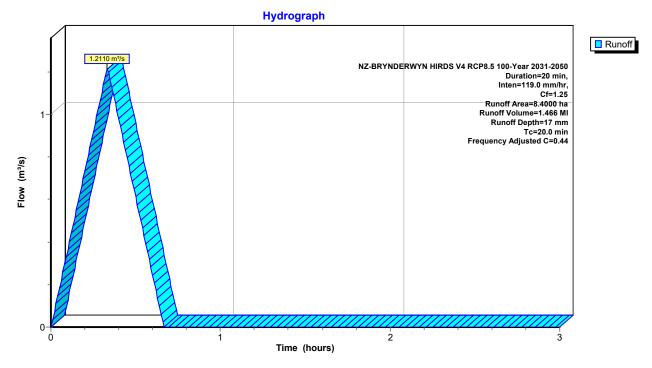
Primary OutFlow Max=0.0095 m³/s @ 0.17 hrs HW=115.189 m (Free Discharge) ←1=Culvert (Inlet Controls 0.0095 m³/s @ 0.53 m/s)


Pond 16P: new cross culvert at gully J 13755

Hydrograph

0.011 Inflow 0.0096 m³/s @ 0.17 hrs - Primary 0.009 Inflow Area=0.1000 ha 0.009 0.008-Inflow=0.0096 m³/s @ 0.17 hrs 0.008-Primary=0.0096 m3/s @ 0.17 hrs 0.007 Peak Elev=115.189 m 0.007 0.006 420 mm (m³/s) 0.006-**Round Culvert** 0.005 Flow n=0.013 0.005 0.004-L=12.80 m 0.004 S=0.0900 m/m 0.003 0.003 0.002 0.002 0.001 0.001 0.000-0-1 Ż 0 3 Time (hours)

Pond 16P: new cross culvert at gully J 13755


Summary for Subcatchment Bush-16:

Runoff = 1.2110 m³/s @ 0.33 hrs, Volume= 1.466 MI, Depth= 17 mm Routed to Pond Culvert-3 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

_	Area	ı (ha)	С	Adj	Descri	ption				
_	8.	4000	0.35		mediur	medium soakage bush and scrub cover 0.25 + 0.1 for steep slope				
	-	4000 4000	0.35	0.44	•	ted Average % Pervious	e, Frequency Adjusted			
	То	Lon	ath	Slope	Volocity	Consoity	Description			
_	Tc (min)	Leng mete)	0	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description			
	20.0						Direct Entry, ker-23.3, kir-4.5			

Subcatchment Bush-16:

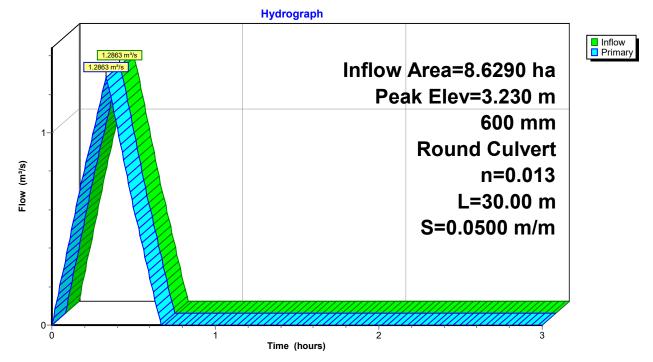
Summary for Subcatchment Road-16: Road

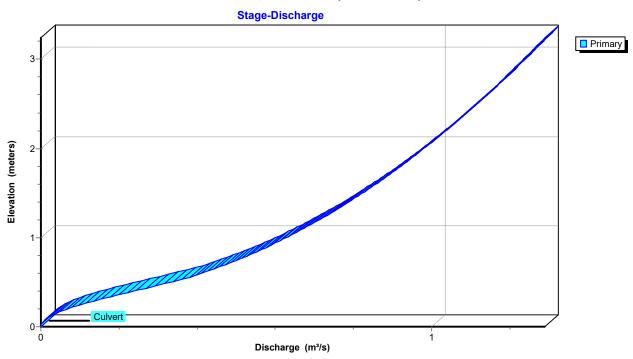
Runoff = 0.0757 m³/s @ 0.17 hrs, Volume= 0.091 Ml, Depth= 40 mm Routed to Pond Culvert-3 : (new Pond)

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

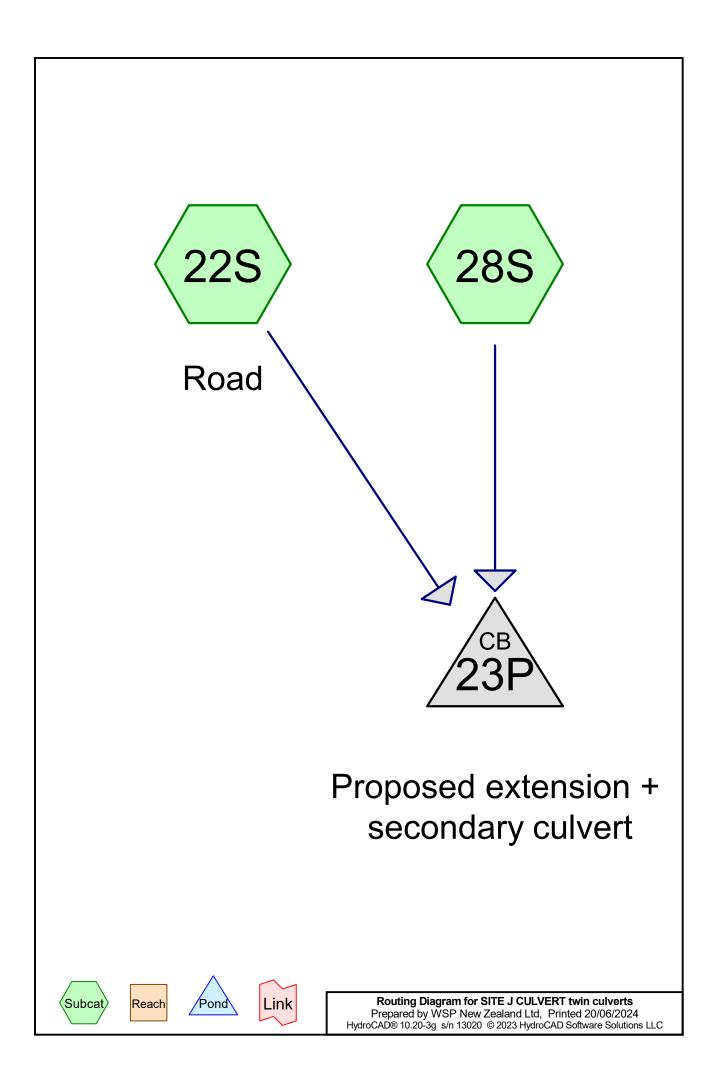
Area (ha) C Ad	Description	
0.2290 0.95		
0.2290 0.95 1.00 0.2290	Weighted Average, Frequency Adjusted 100.00% Impervious Area	
Tc Length Slope (min) (meters) (m/m)	Velocity Capacity Description (m/sec) (m³/s)	
10.0	Direct Entry,	
	Subcatchment Road-16: Road	
	Hydrograph	
		Runoff
0.08 0.075 0.075 0.075 0.065 0.065	NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25 Runoff Area=0.2290 ha Runoff Volume=0.091 MI Runoff Volume=0.091 MI	
0.055 0.055 0.055 0.045 0.045 0.044 0.025	Tc=10.0 min Frequency Adjusted C=1.00	
0.04 0.035 0.03		
0.025 0.02 0.015		
0.01		
	1 2 3 Time (hours)	

Summary for Pond Culvert-3: (new Pond)


Inflow Area =		8.6290 ha,	2.65% Impervious, In	nflow Depth = 1	8 mm for	100-Year 2031-2050 event
Inflow	=	1.2863 m³/s @	0.33 hrs, Volume=	1.557 MI		
Outflow	=	1.2863 m³/s @	0.33 hrs, Volume=	1.557 MI,	Atten= 0%	Lag= 0.0 min
Primary	=	1.2863 m³/s @	0.33 hrs, Volume=	1.557 MI		

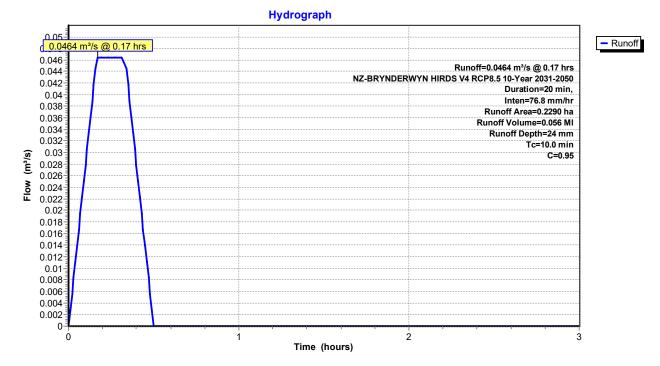

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= $3.230 \text{ m} \oplus 0.33 \text{ hrs}$

Device	Routing	Invert	Outlet Devices						
#1	Primary	0.000 m	600 mm Round Culvert L= 30.00 m Ke= 0.500 Inlet / Outlet Invert= 0.000 m / -1.500 m S= 0.0500 m/m Cc= 0.900 n= 0.013, Flow Area= 0.283 m ²						


Primary OutFlow Max=1.2821 m³/s @ 0.33 hrs HW=3.211 m (Free Discharge) ←1=Culvert (Inlet Controls 1.2821 m³/s @ 4.53 m/s)

Pond Culvert-3: (new Pond)

Pond Culvert-3: (new Pond)

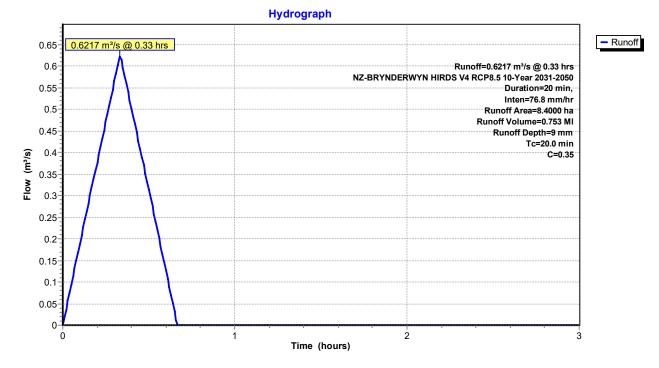

Summary for Subcatchment 22S: Road

Runoff = 0.0464 m³/s @ 0.17 hrs, Volume= 0.056 MI, Depth= 24 mm Routed to Pond 23P : Proposed extension + secondary culvert

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 10-Year 2031-2050 Duration=20 min, Inten=76.8 mm/hr

Ar	ea (ha)	С	Des	cription		
	0.2290	0.95				
	0.2290		100.	00% Impe	rvious Area	3
To (min		0	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description
10.0)					Direct Entry,

Subcatchment 22S: Road


Summary for Subcatchment 28S:

Runoff = 0.6217 m³/s @ 0.33 hrs, Volume= 0.753 Ml, Depth= 9 mm Routed to Pond 23P : Proposed extension + secondary culvert

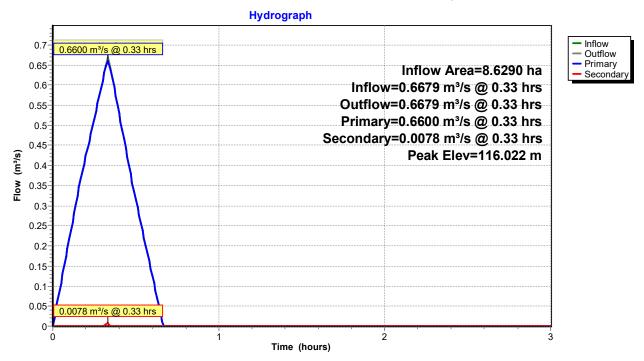
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 10-Year 2031-2050 Duration=20 min, Inten=76.8 mm/hr

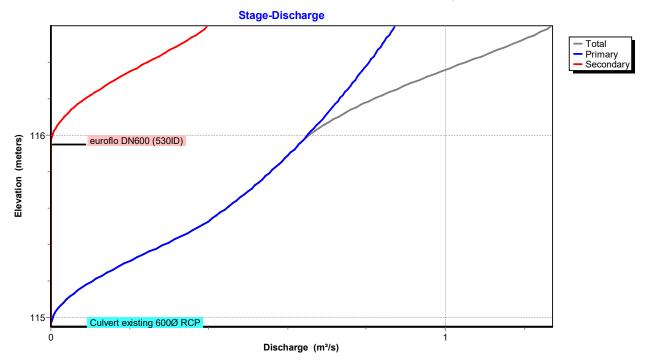
Area	a (ha)	С	Desc	cription		
8.	4000	0.35	med	ium soaka	ige bush ar	d scrub cover 0.25 + 0.1 for steep slope
8.4000 100.00% Pervious Area						
Tc _(min)	Lene (mete	<i>,</i>	Slope (m/m)	Velocity (m/sec)	Capacity (m³/s)	Description
20.0						Direct Entry, direct entry

Subcatchment 28S:

Summary for Pond 23P: Proposed extension + secondary culvert

Inflow Are	a =	8.6290 ha,	2.65% Impervious,	Inflow Depth =	9 mm	for	10-Year 2031-2050 event
Inflow	=	0.6679 m³/s @	0.33 hrs, Volume	= 0.808 MI			
Outflow	=	0.6679 m³/s @	0.33 hrs, Volume	= 0.808 MI,	Atten= ()%,	Lag= 0.0 min
Primary	=	0.6600 m³/s @	0.33 hrs, Volume	= 0.808 MI			
Secondar	y =	0.0078 m³/s @	0.33 hrs, Volume	= 0.001 MI			

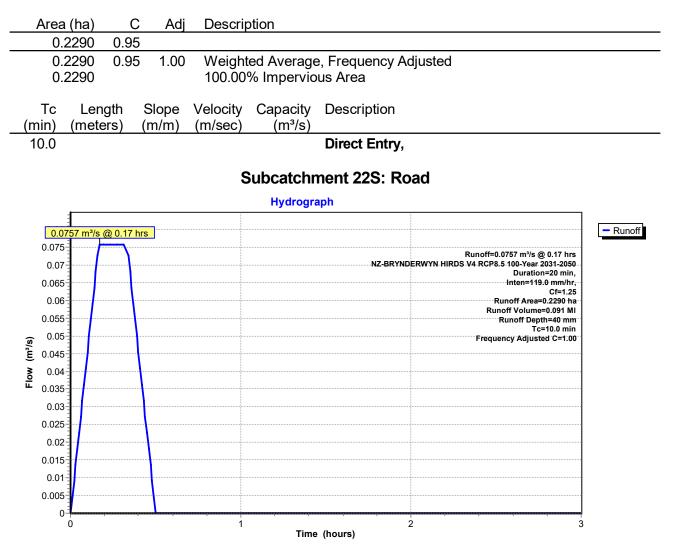

Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 116.022 m @ 0.33 hrs


Device	Routing	Invert	Outlet Devices
#1	Secondary	115.950 m	650 mm Round eurofio DN600 (530ID)
	-		L= 30.00 m CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 115.950 m / 114.750 m S= 0.0400 m/m Cc=
			0.900 n= 0.013, Flow Area= 0.332 m ²
#2	Primary	114.950 m	600 mm Round Culvert existing 600Ø RCP
			L= 30.00 m RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 114.950 m / 113.450 m S= 0.0500 m/m Cc=
			0.900 n= 0.013, Flow Area= 0.283 m ²

Primary OutFlow Max=0.6585 m³/s @ 0.33 hrs HW=116.018 m (Free Discharge) ←2=Culvert existing 600Ø RCP (Inlet Controls 0.6585 m³/s @ 2.33 m/s)

Secondary OutFlow Max=0.0072 m³/s @ 0.33 hrs HW=116.018 m (Free Discharge) ←1=euroflo DN600 (530ID) (Inlet Controls 0.0072 m³/s @ 0.39 m/s)

Pond 23P: Proposed extension + secondary culvert



Pond 23P: Proposed extension + secondary culvert

Summary for Subcatchment 22S: Road

Runoff = 0.0757 m³/s @ 0.17 hrs, Volume= 0.091 MI, Depth= 40 mm Routed to Pond 23P : Proposed extension + secondary culvert

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

Summary for Subcatchment 28S:

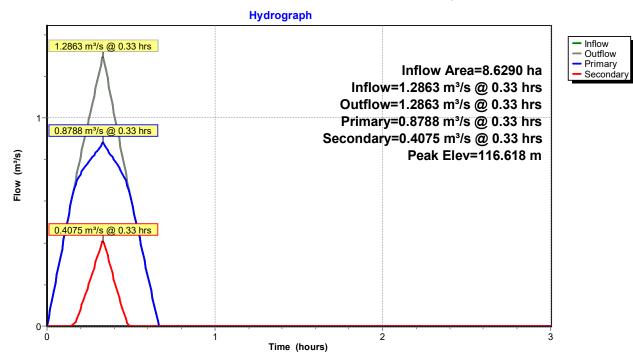
Runoff = 1.2110 m³/s @ 0.33 hrs, Volume= 1.466 Ml, Depth= 17 mm Routed to Pond 23P : Proposed extension + secondary culvert

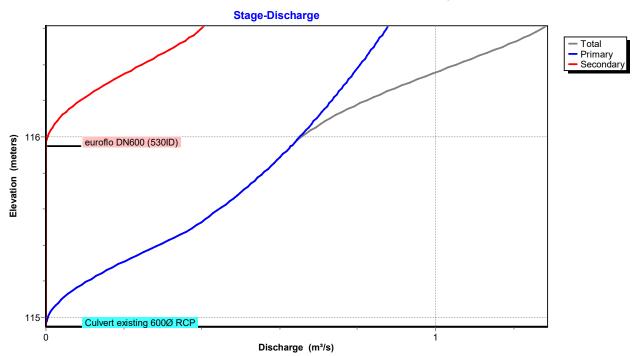
Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr, Cf=1.25

A	- (h)		Deeewin				
-	<u>a (ha)</u> .4000 0.3	<u>C Adj</u>			bush and scru	b cover 0.25 + 0.1 for steep s	
-	.4000 0.3						siope
	8.4000 0.35 0.44 Weighted Average, Frequency Adjusted 8.4000 100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(meters)	(m/m)	(m/sec)	(m³/s)	Dire et Entre (dive et entre	
20.0					Direct Entry,	direct entry	
				Subcate	chment 28S:		
_				Hydrogra	aph		
	1.2110 m ³ /s @	0.33 hrs					- Runoff
-		0.00 113				Runoff=1.2110 m³/s @ 0.33 hrs	
					NZ-BRYNDER	WYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=20 min, Inten=119.0 mm/hr,	
1-						Cf=1.25 Runoff Area=8.4000 ha	
•						Runoff Volume=1.466 MI Runoff Depth=17 mm	
(m³/s						Tc=20.0 min Frequency Adjusted C=0.44	
Flow (m³/s)							
Ē							
-							
-	/						
	/	<u>۱</u>					
0-	/,)	·	1			2	3
				Time	(hours)		

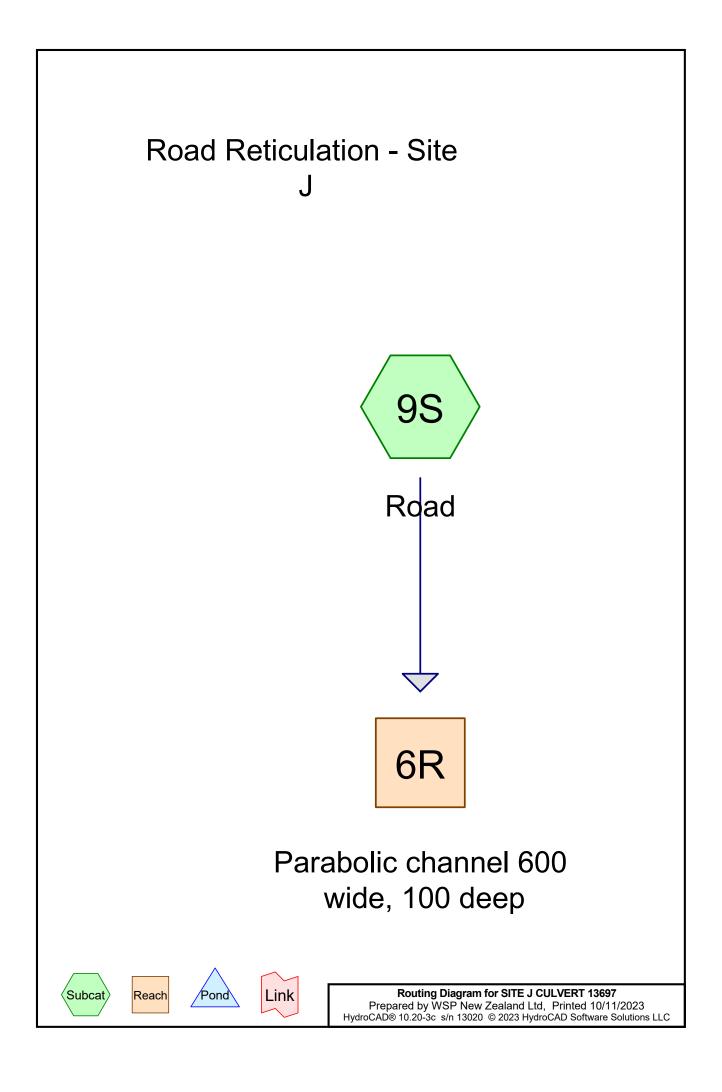
Summary for Pond 23P: Proposed extension + secondary culvert

Inflow Area =	8.6290 ha,	2.65% Impervious, Inf	flow Depth = 1	18 mm for	100-Year 2031-2050 event
Inflow =	1.2863 m³/s @	0.33 hrs, Volume=	1.557 MI		
Outflow =	1.2863 m³/s @	0.33 hrs, Volume=	1.557 MI,	Atten= 0%,	Lag= 0.0 min
Primary =	0.8788 m³/s @	0.33 hrs, Volume=	1.322 MI		
Secondary =	0.4075 m³/s @	0.33 hrs, Volume=	0.235 MI		


Routing by Stor-Ind method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs Peak Elev= 116.618 m @ 0.33 hrs


Device	Routing	Invert	Outlet Devices
#1	Secondary	115.950 m	650 mm Round eurofio DN600 (530ID)
	-		L= 30.00 m CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 115.950 m / 114.750 m S= 0.0400 m/m Cc=
			0.900 n= 0.013, Flow Area= 0.332 m ²
#2	Primary	114.950 m	600 mm Round Culvert existing 600Ø RCP
			L= 30.00 m RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 114.950 m / 113.450 m S= 0.0500 m/m Cc=
			0.900 n= 0.013, Flow Area= 0.283 m ²

Primary OutFlow Max=0.8772 m³/s @ 0.33 hrs HW=116.613 m (Free Discharge) ←2=Culvert existing 600Ø RCP (Inlet Controls 0.8772 m³/s @ 3.10 m/s)


Secondary OutFlow Max=0.4049 m³/s @ 0.33 hrs HW=116.613 m (Free Discharge) ←1=euroflo DN600 (530ID) (Inlet Controls 0.4049 m³/s @ 1.22 m/s)

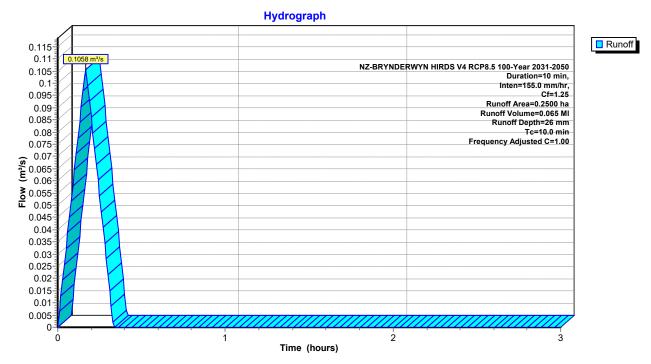
Pond 23P: Proposed extension + secondary culvert

Pond 23P: Proposed extension + secondary culvert

Z-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25 Prepared by WSP New Zealand Ltd Printed 10/11/2023 HydroCAD® 10.20-3c s/n 13020 © 2023 HydroCAD Software Solutions LLC Page 2

Summary for Subcatchment 9S: Road

Runoff = 0.1058 m³/s @ 0.17 hrs, Volume= 0.065 Ml, Depth= 26 mm Routed to Reach 6R : Parabolic channel 600 wide, 100 deep

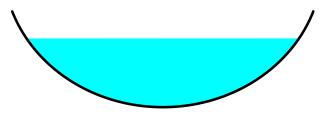

Runoff by Rational method, Rise/Fall=1.0/1.0 xTc, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs NZ-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25

_	Area	ı (ha)	C	; Adj	Descrip	otion	
	0.	2300	0.95	5	road ca	atchment	
_	0.	0200	0.30)	cut fac	е	
	0.	2500	0.90) 1.00	Weight	ed Average	e, Frequency Adjusted
	0.	0200			8.00%	Pervious A	rea
	0.	2300			92.00%	6 Imperviou	s Area
	_						
	Тс	Leng		Slope	Velocity	Capacity	Description
	(min)	(mete	rs)	(m/m)	(m/sec)	(m³/s)	

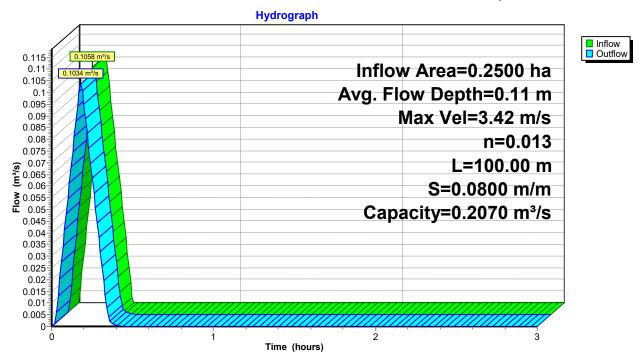
Direct Entry,

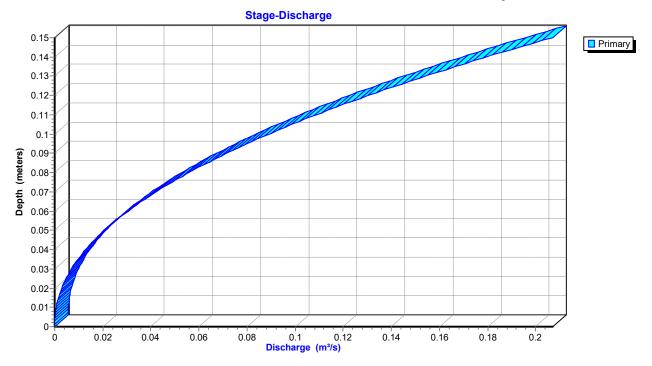
Subcatchment 9S: Road

Z-BRYNDERWYN HIRDS V4 RCP8.5 100-Year 2031-2050 Duration=10 min, Inten=155.0 mm/hr, Cf=1.25 Prepared by WSP New Zealand Ltd Printed 10/11/2023 HydroCAD® 10.20-3c s/n 13020 © 2023 HydroCAD Software Solutions LLC Page 3

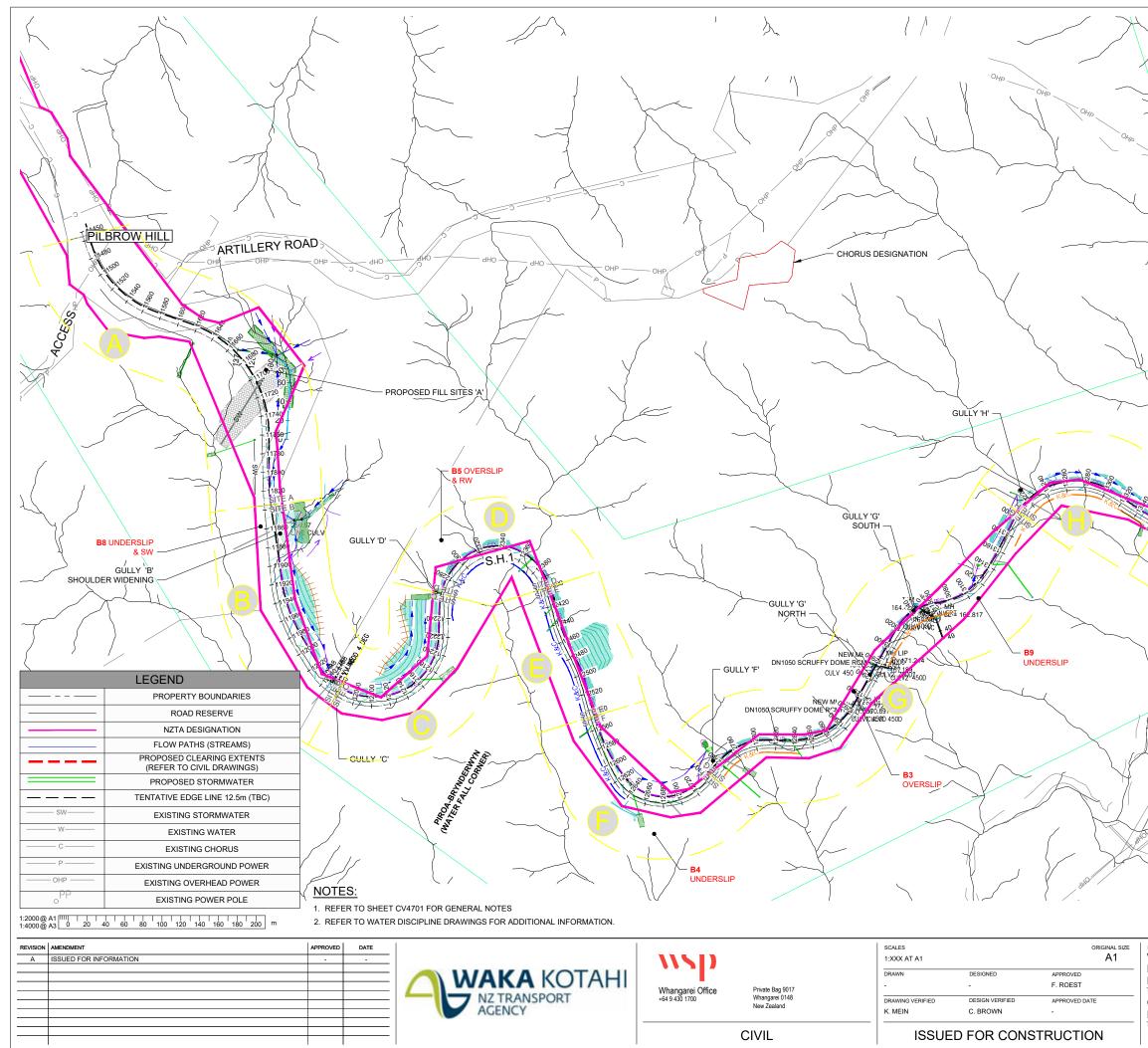

Summary for Reach 6R: Parabolic channel 600 wide, 100 deep

Inflow Area = 0.2500 ha, 92.00% Impervious, Inflow Depth = 26 mm for 100-Year 2031-2050 event Inflow = $0.1058 \text{ m}^3/\text{s}$ @ 0.17 hrs, Volume= 0.065 MIOutflow = $0.1034 \text{ m}^3/\text{s}$ @ 0.18 hrs, Volume= 0.065 MI, Atten= 2%, Lag= 0.8 min

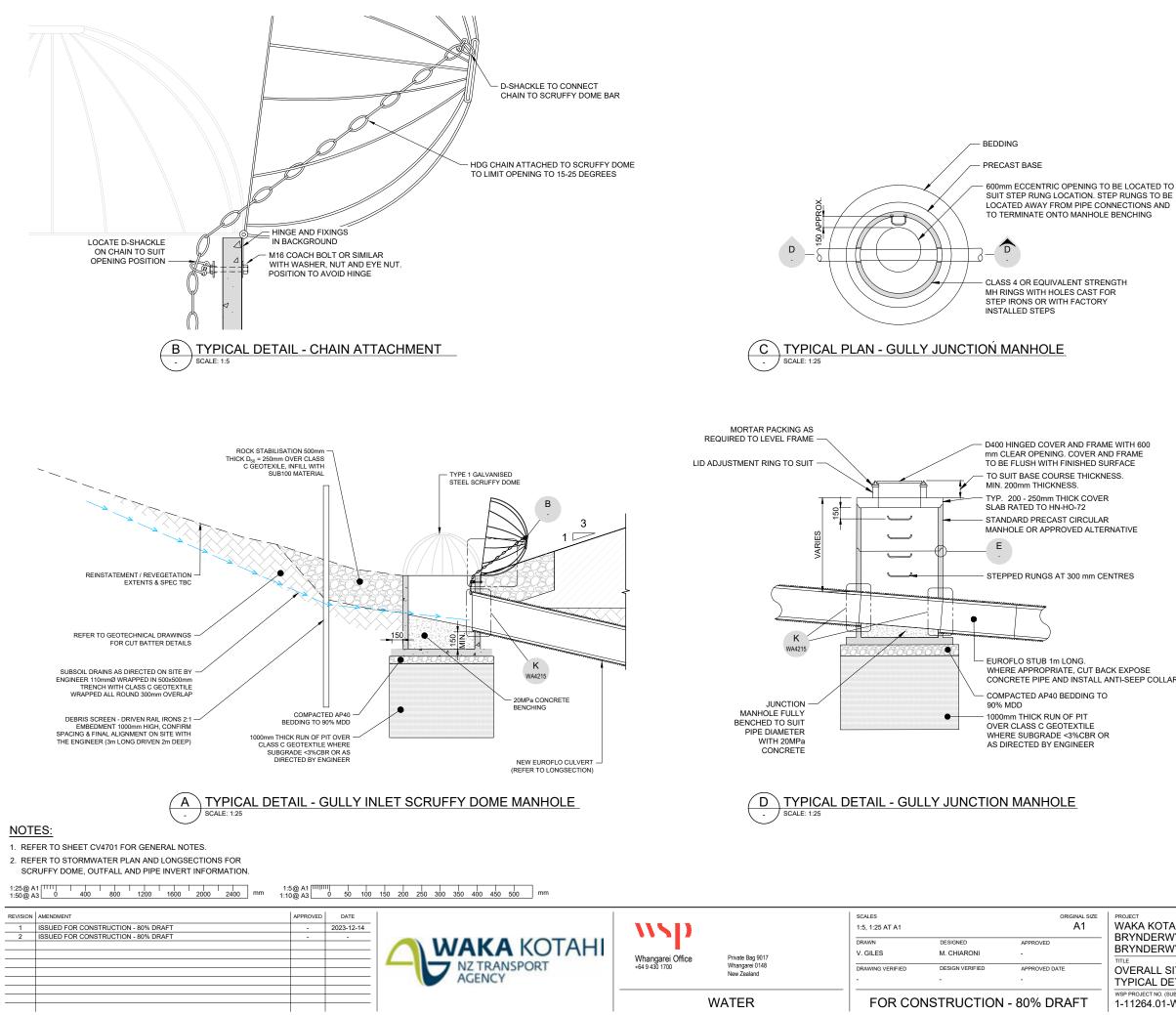

Routing by Stor-Ind+Trans method, Time Span= 0.00-3.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.42 m/s, Min. Travel Time= 0.5 min Avg. Velocity = 1.98 m/s, Avg. Travel Time= 0.8 min


Peak Storage= 3.0 m³ @ 0.17 hrs Average Depth at Peak Storage= 0.11 m , Surface Width= 0.42 m Bank-Full Depth= 0.15 m Flow Area= 0.05 m², Capacity= 0.2070 m³/s

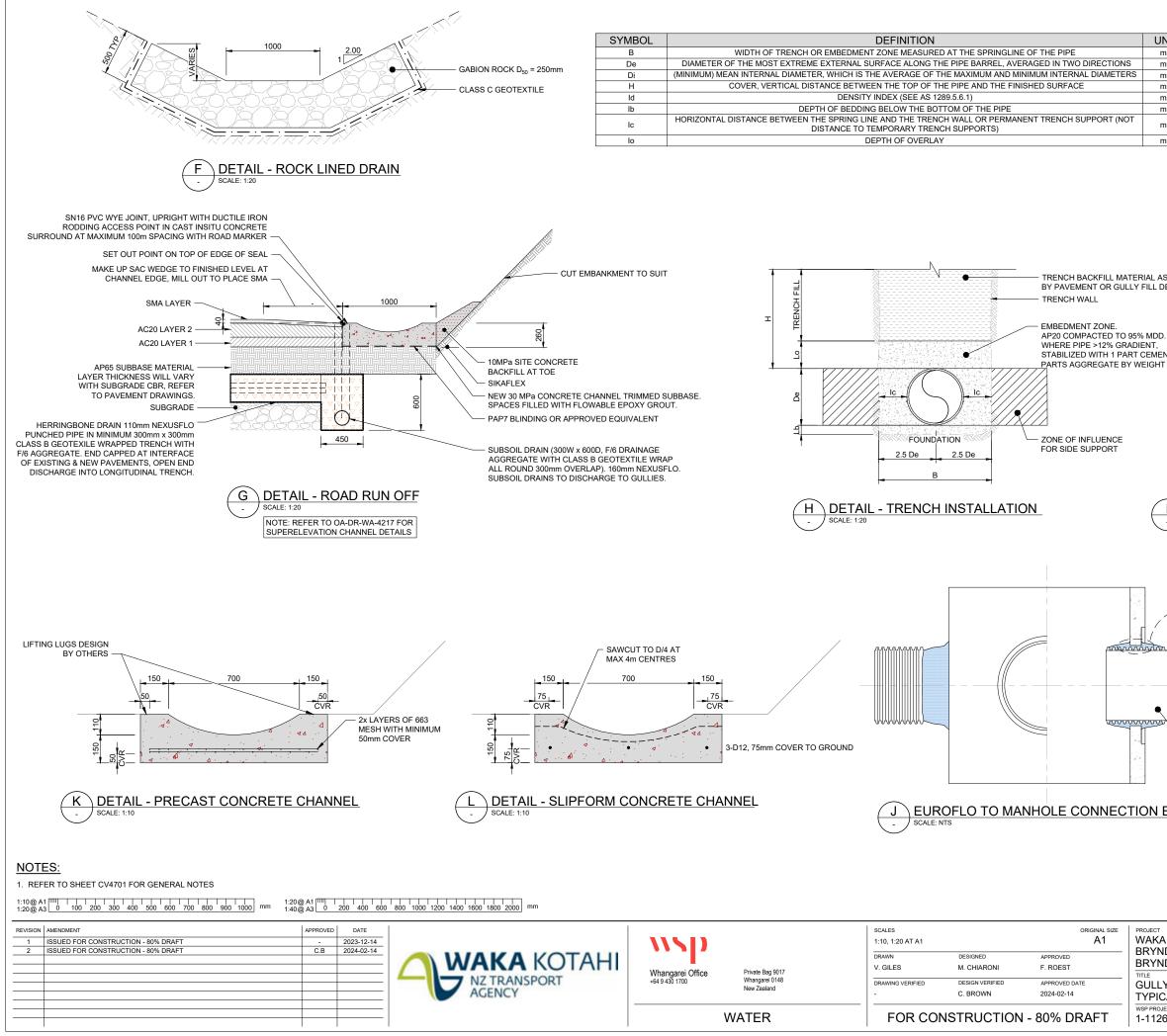
0.50 m x 0.15 m deep Parabolic Channel, n= 0.013 Length= 100.00 m Slope= 0.0800 m/m Inlet Invert= 100.000 m, Outlet Invert= 92.000 m


Reach 6R: Parabolic channel 600 wide, 100 deep

Reach 6R: Parabolic channel 600 wide, 100 deep


APPENDIX D – CONSTRUCTION DRAWINGS

Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:32:46 am


C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4200.dwg WA-4200

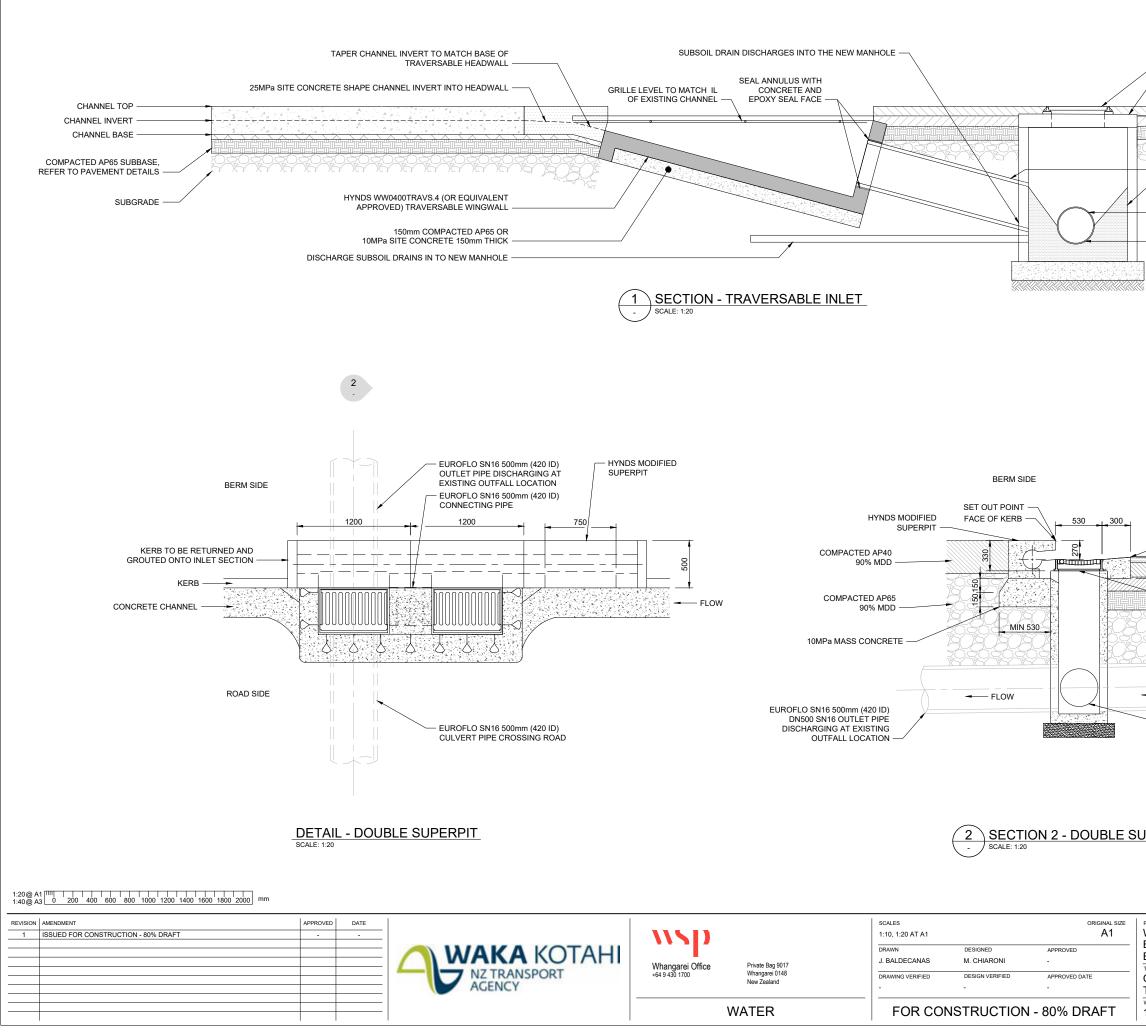
the states) M
		•	,
PROPOSED FILL SITE ATLAS	atto	airio	
	GULLY 'J' -	6440	100
GULLY IT		A B CONTRACT	
		in the second se	Htter of
	2000 STALL		XI/
			01
	1	South Contraction	~
	HRP	C	^{- Онр}
	- OHp		
	$\langle \rangle$		
		N PROGRE 24/02/2024 10:32:46 am	SS
ROJECT WAKA KOTAHI NZ TRANSPORT / BRYNDERWYN HILLS - S.H.1 BRYNDERWYN HILL REPAIRS	AGENCY R.S 303	R.P 11450.0 - R.P	13902.0
OVERALL SITE DRAINAGE PLAN MSP PROJECT NO. (SUB-PROJECT)		SHEET NO.	REVISION
1-11264.01-WSP-EWGL-OA-DR		WA4200	A

C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4214.dwg WA4214

X EXPOSE TI-SEEP COLLAR
APPROVED HYDROPHILIC SEAL OR EPOXY MORTAR STRIP OR BUTYL MASTIC E DETAIL - JOINT - NTS
PROJECT WAKA KOTAHI NZ TRANSPORT AGENCY BRYNDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 BRYNDERWYN HILL REPAIRS - ENABLING WORKS TITLE
OVERALL SITE TYPICAL DETAILS - SHEET 1
WSP PROJECT NO. (SUB-PROJECT) SHEET NO. REVISION 1-11264.01-WSP-EWGL-OA-DR WA4214 2

C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4215.dwg WA4215 Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:33:02 am

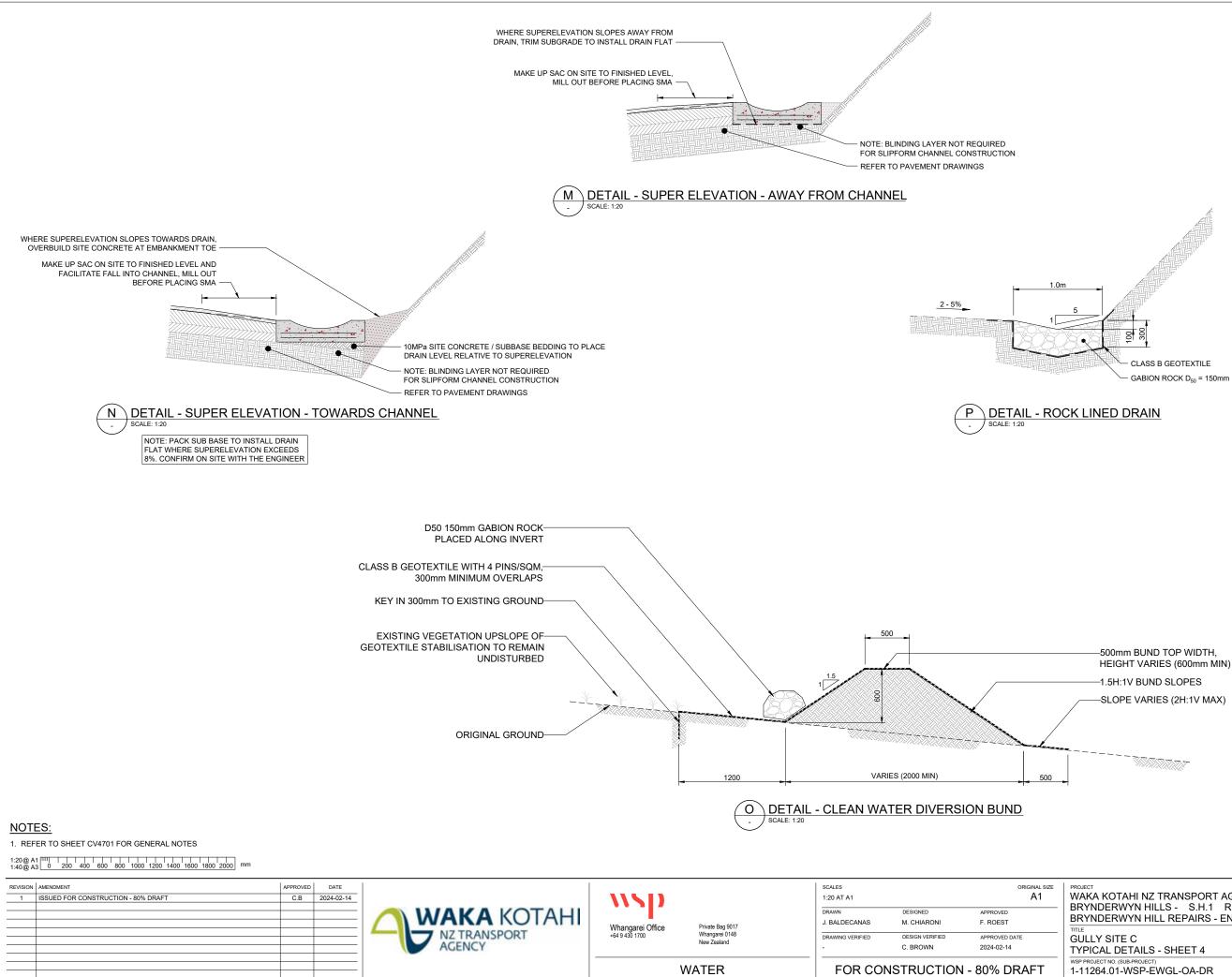
UNIT
mm


	_		MIN	IMUM VALU	ES	
nm	C)e	lb	lc†	lo†	
nm	≥75	≤150	75	100	100	
nm	>150	≤300	100	150	150	
nm	>300	≤450	100	200	150	
nm	>450	≤900	150	300	150	
nm	>900	≤1500	150	350	200	
nm	>1500	≤4000	150	0.25 De	300	
nm	*THE OBJECTIVE	IS TO ACHIEVE TH	IE SAME (CONDITION	S AND	
	MAY BE VARIED, CIRCUMSTANCE TECHNIQUES AR SUITABLE FOR D	IPACTION ALL ARC AT THE DISCRETIC S WHERE SPECIAL E USED OR WHERI IRECT EMBEDMEN N LOADS ARE APPL	ON OF THE CONSTREE NATIVE	E DESIGNE UCTION SOILS ARE	r, in	
		Ν				
S REQU	IRED	`\				
ESIGN						
			<u></u>			
NT : 20		1	\sim			
г		/ `\o		\	<u> </u>	
		Y		\[]]		
	////14/5			X[]]]		
	=		1	\[]		
				\$ <u> </u>		
		FOUNDATI	ON			
Γ	DETAIL - EMB		NSTA		N	
	CALE: 1:20					
	/ - · · · ·					
1			FIII	THE GAP E	ETWEEN	THE
1				E AND SLEI		
5				IG EPOXY		
	<u></u>			RTAR FOR A		4 + 4
www					0	
				IGH UP THI		
				ERNAL SUF E TO ENSUF		
				IESION	o thirt	
buyt						
\backslash						
	AVAILABLE FO EUROFLO® PI					
ELEV	ATION					
	AHI NZ TRANSP			450.0 -	D 1000	
	YN HILLS - S.				.н 1390	2.0
UEKN	VYN HILL REPAII	- ENABLING		10		
Y SITE	EC					
	TAILS - SHEET	2				
	JB-PROJECT)		s	HEET NO.	REVIS	ION

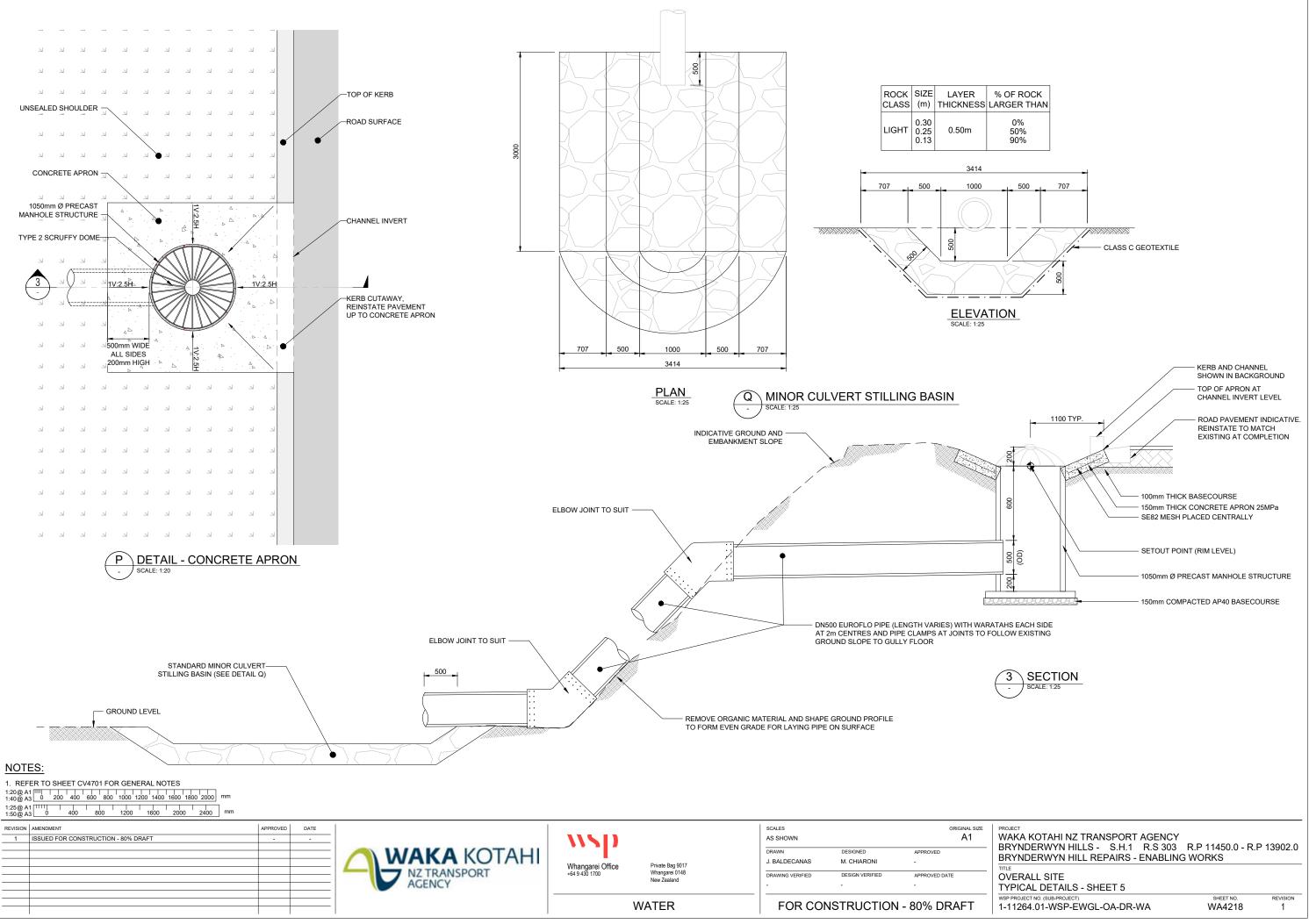
1-11264.01-WSP-EWGL-OA-DR

M

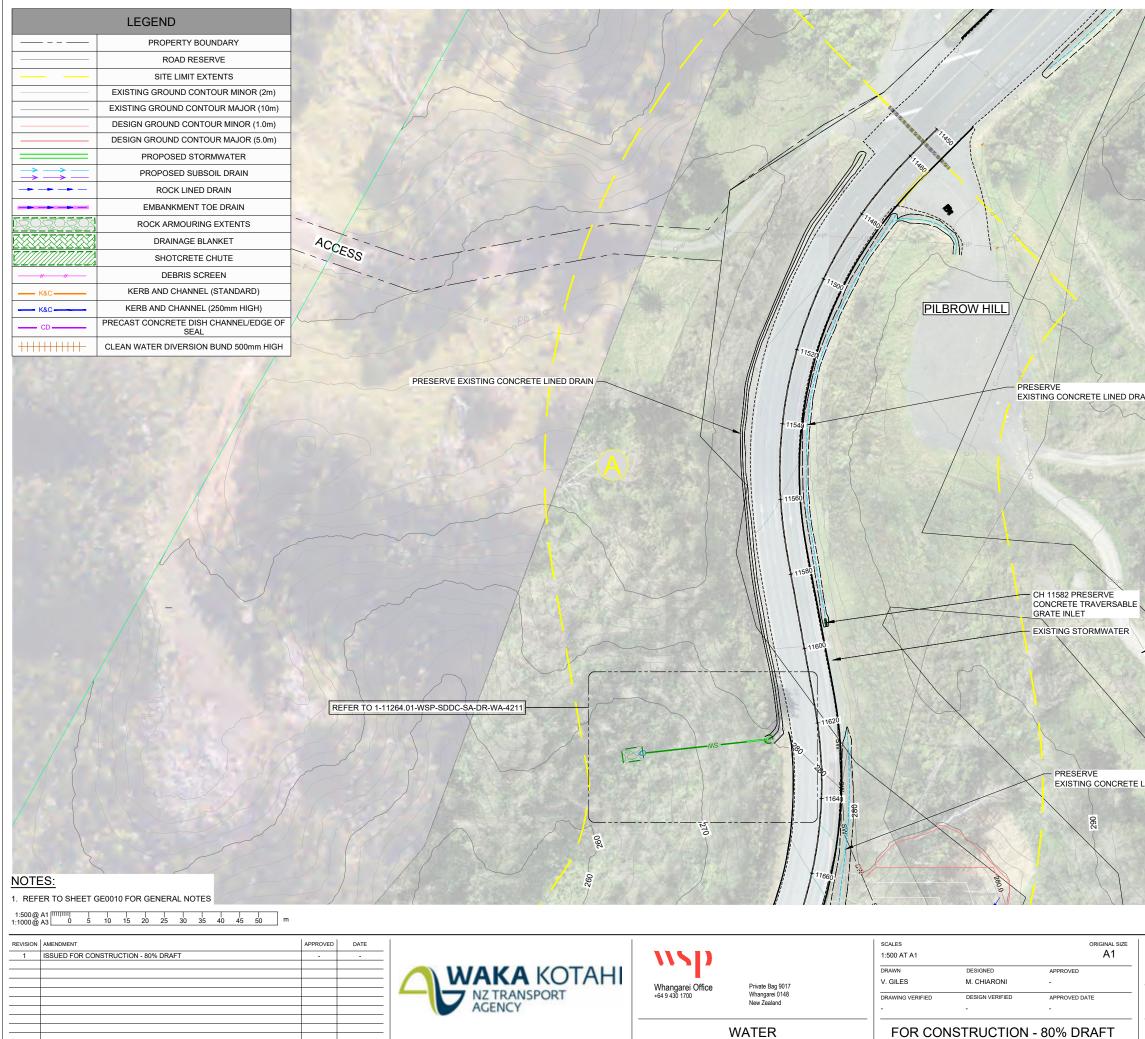
WA4215


REVISION 2

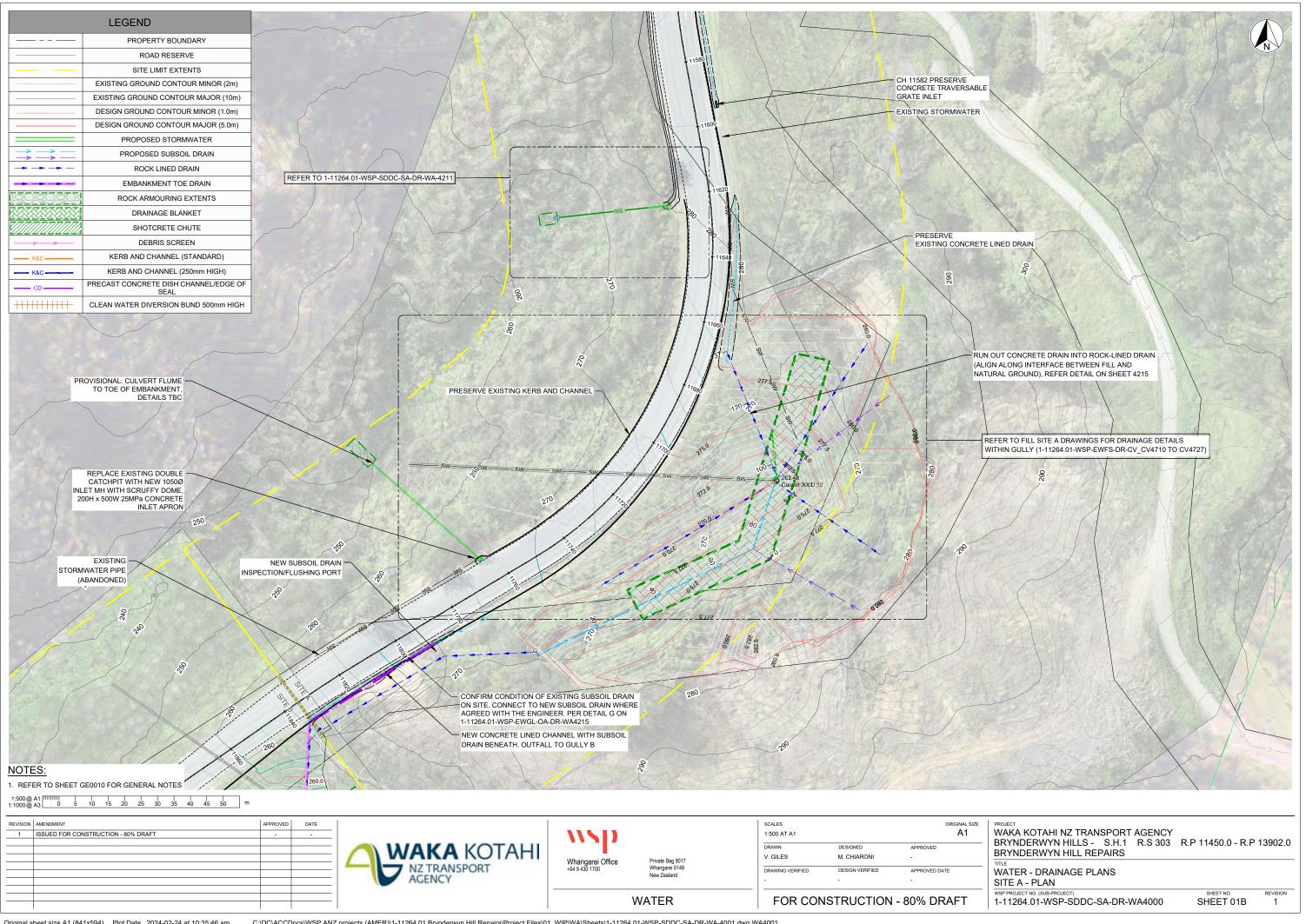
Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:33:10 am C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyr


C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4216.dwg WA4216

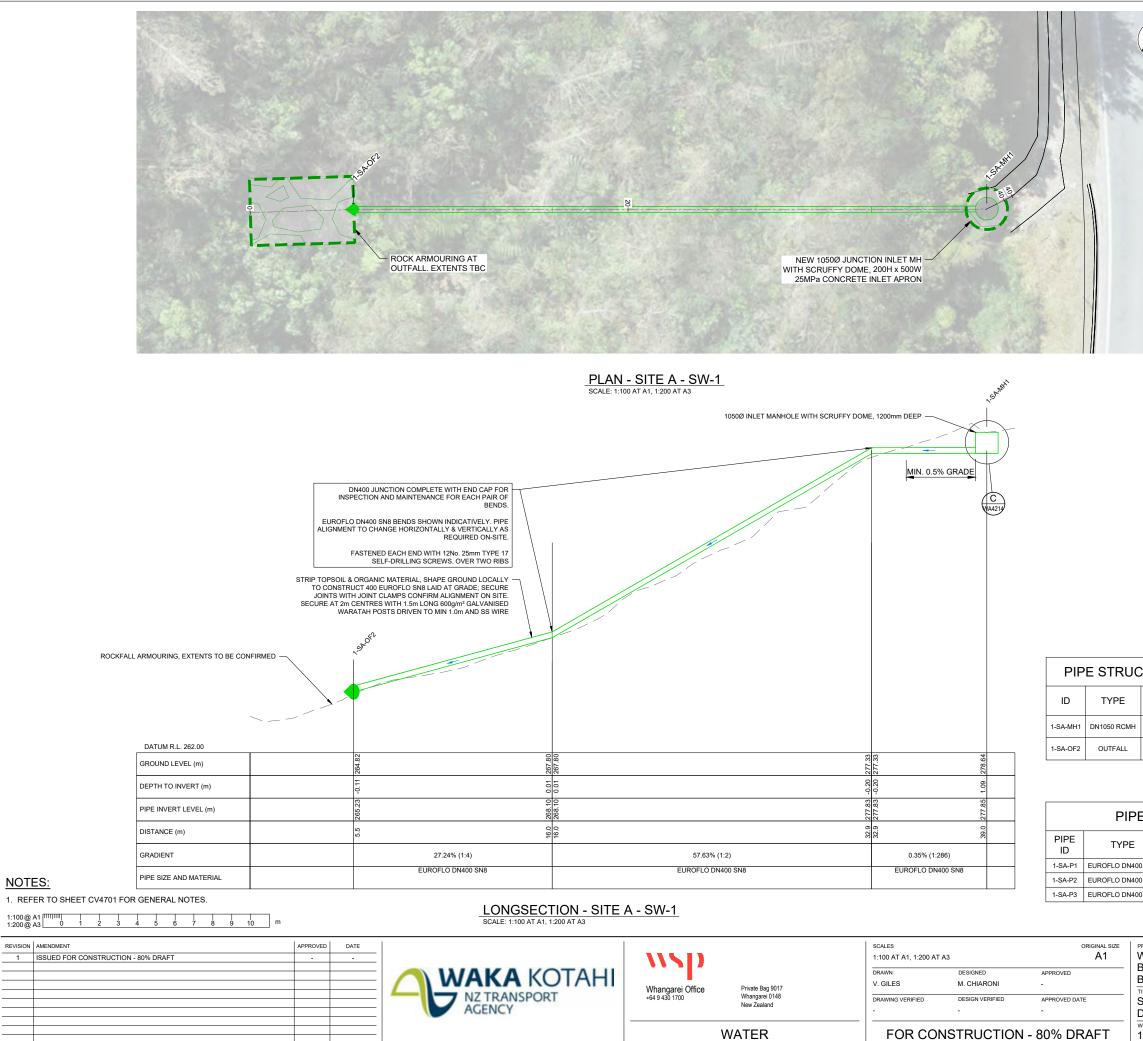
	COVER AND FRAME		
HD PRECAST	CONCRETE LID		
	- AC20 LAYER 2 - AC20 LAYER 1 LAYER THICKNESS WILL VAR WITH SUBGRADE CBR, REFEI TO PAVEMENT DRAWINGS.		
EUROFLO	SN16 500mm (420 ID)		
	C/W D400 LID, COVER & FRAME	e. In road	
	NCHED MANHOLE WITH ALLOW PRAIN CONNECTION	ANCE FOR	
	SN16 DN500 (420 ID) TO OUTFA T CLAMPS AT EACH JOINT.	LL COMPLETE	
ROAD SIDE			
	IINIMUM 25MPa ONCRETE SURROUND		
20	- REINSTATE ROAD PAVEMEN	NT TO	
	MATCH EXISTING	-	
	— MINIMUM 25MPa CONCRETE SURROUND		
101 101			
FLOW			
		SN16 500mm (420 ID) 16 CULVERT PIPE	
	EUROFLO CONNECT	SN16 400mm (420 ID) ING PIPE	
JPERPIT			
BRYNDERWY BRYNDERWY	II NZ TRANSPORT AGEN N HILLS - S.H.1 R.S 3 N HILL REPAIRS - ENAE	303 R.P 11450.0 - R.F	P 13902.0
	AILS - SHEET 3		
WSP PROJECT NO. (SUB-P		SHEET NO. WA4216	REVISION


PROJECT		
WAKA KOTAHI NZ TRANSPORT AGENC' BRYNDERWYN HILLS - S.H.1 R.S 303 BRYNDERWYN HILL REPAIRS - ENABLIN	R.P 11450.0 - R.I	P 13902.0
TYPICAL DETAILS - SHEET 4		
WSP PROJECT NO. (SUB-PROJECT) 1-11264.01-WSP-EWGL-OA-DR	SHEET NO. WA4217	REVISION

HEIGHT VARIES (600mm MIN)


Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:33:25 am

C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-EWGL-OA-DR-WA-4218.dwg WA4218


C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SA-DR-WA-4000.dwg WA4000

	11/1		
	RI		
	25	3///	N
15/			
8 8 1 1 1 1	X		
	X		100
		1	
		X	
	Carlo Sal	1 A	
			1.00
	- Test		
	ton		12.0
	145.5	2 3 2 3 2 3	
and the search	and the second second		
IN			1
			T
1		and the	at
~~~~	~	1 ( / 2 m)	1
			1
and the second	「「「」、大学	> [ [ ] ] ]	f m
	and Ad		F
515 1 1 753 S.F	Sant Tay	S ATT A	1
2. 3 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E ASA		
			and the
- OHP OHP P		A A	/
	1 6 / 1/		
	2662	stel the	
ARTHLERY ROAD		11/1/1/	
"LED.		1000	11
TF PO			1
AD /		1000	
			1 million
	704		~
1	11100	)	
			1
300	121	$\leq 100$	
PALS			F
	6		
		7 1 1	
PROJECT WAKA KOTAHI NZ TRANS			
BRYNDERWYN HILLS -	S.H.1 R.S 303	R.P 11450.0 - R.P	13902.0
BRYNDERWYN HILL REP	AIRS		
WATER - DRAINAGE PLA	NS		
SITE A - PLAN WSP PROJECT NO. (SUB-PROJECT)		SHEET NO.	REVISION
1-11264.01-WSP-SDDC-S	A-DR-WA4000	SHEET 01A	1



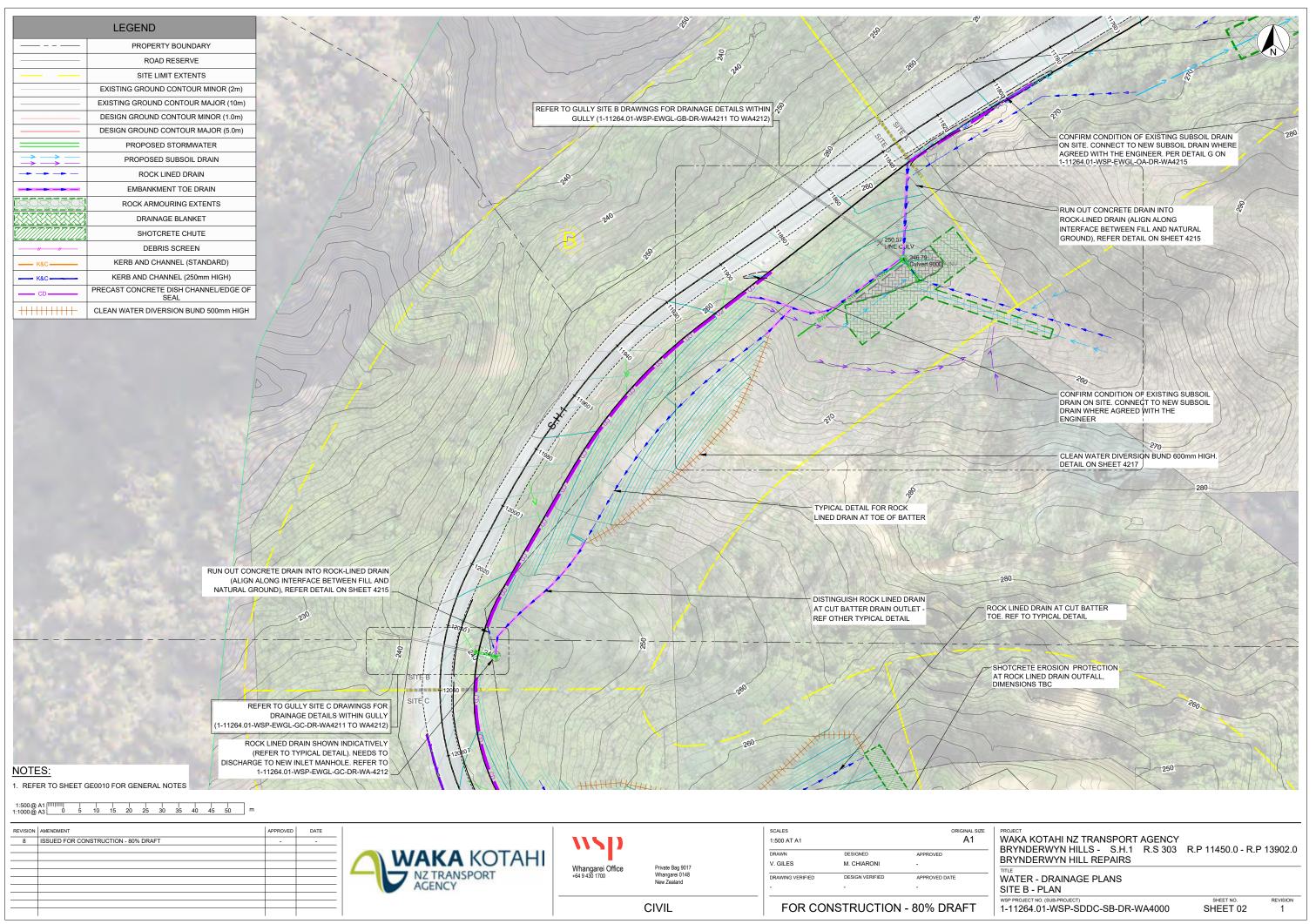
Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:35:46 am

C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SA-DR-WA-4001.dwg WA4001

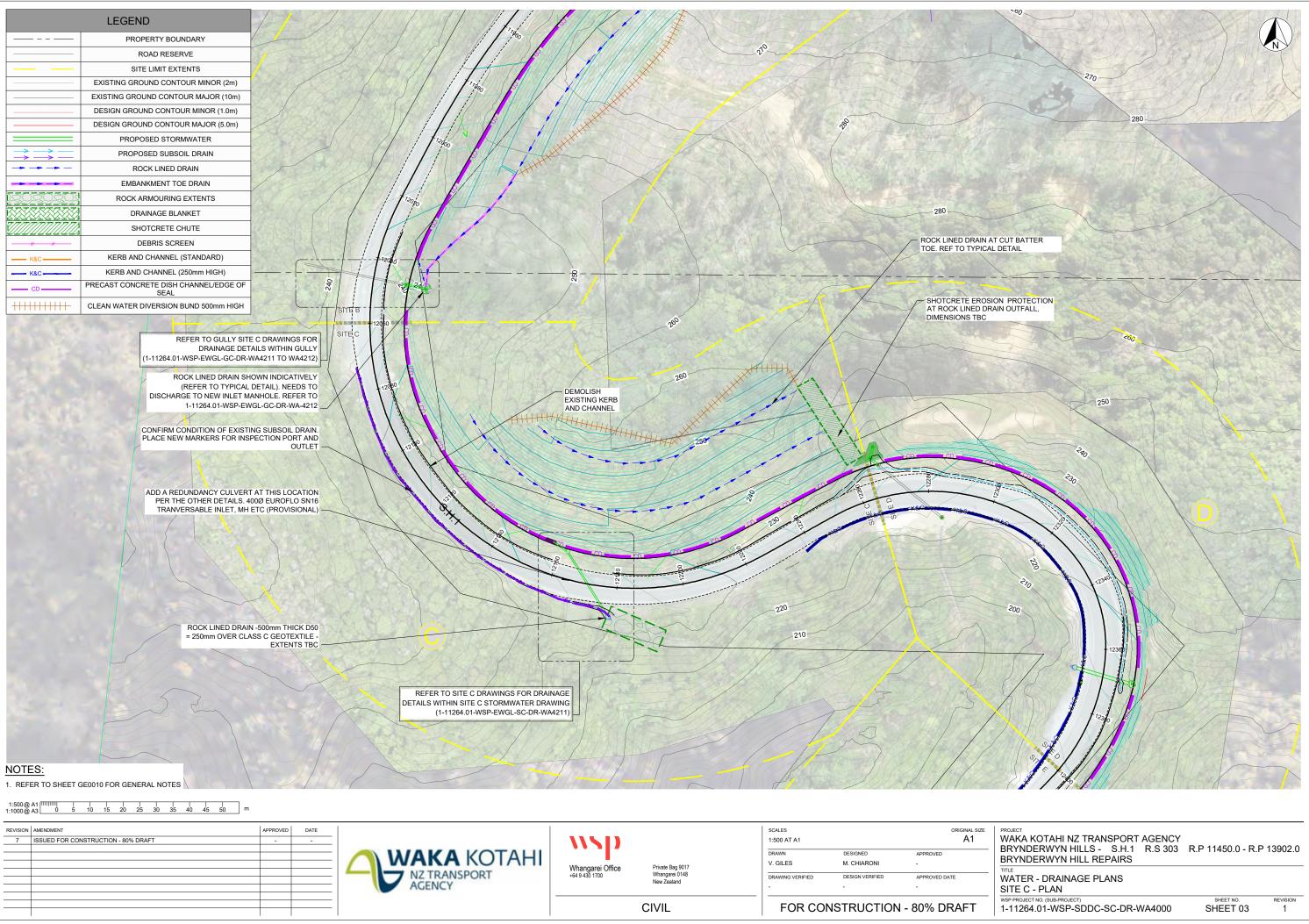




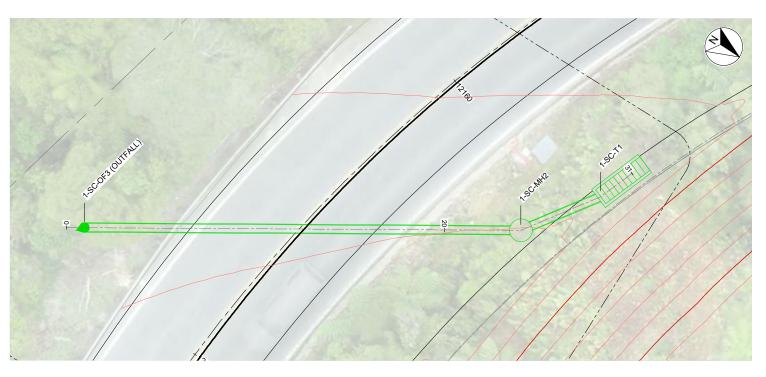
DETAILS	CO-ORD (CENTROID)
CL = 278.955 1-SA-P1 INV OUT = 277.855	E: 369109.48 N: 889864.29
CL = 267.682 1-SA-P3 INV IN = 265.234	E: 369076.20 N: 889860.57


PE DATA - SITE A - SW-1									
2D 3D LENGTH LENGTH GRADE US IL DS I									
00 SN8	6.1	6.1	0.35%	277.85	277.83				
00 SN8	16.9	19.5	57.63%	277.83	268.10				
00 SN8	00 SN8 10.5 10.9 27.24% 268.10 265.23								

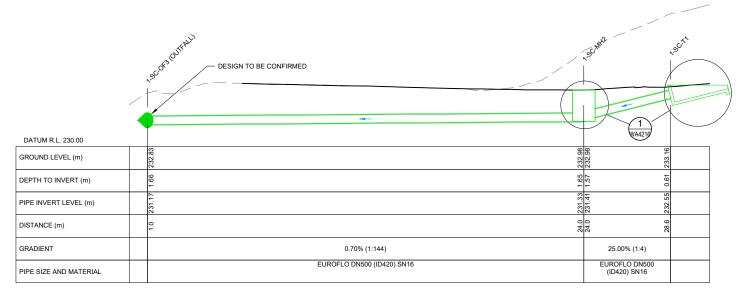
PROJECT		
WAKA KOTAHI NZ TRAN	ISPORT	AGENCY
BRYNDERWYN HILLS -	S.H.1	R.S 303
BRYNDERWYN HILL RE	PAIRS	
TITLE		


R.P 11450.0 - R.P 13902.0

TITLE SITE A DRAINAGE PLAN AND LONGSECTION WSP PROJECT NO. (SUB-PROJECT) 1-11264.01-WSP-SDDC-SA-DR


SHEET NO. WA4211 REVISION




C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SB-DR-WA-4000.dwg WA4000



C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SC-DR-WA-4000.dwg WA4000



PLAN - SITE C - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3



PIPE STRUCTURES - SITE C - SW-1							
ID	TYPE	DETAILS	CO-ORD (CENTROID				
1-SC-T1	HYNDS WW0450 TRAVS.4 HEADWALL	CL = 233.257 1-SC-P1 INV OUT = 232.553	E: 368914.67 N: 889480.63				
1-SC-MH2	DN1050 INLET MH WITH GRATE	CL = 232.982 1-SC-P1 INV IN = 231.407 1-SC-P2 INV OUT = 231.333	E: 368918.42 N: 889477.99				
1-SC-OF3 (OUTFALL)	OUTFALL	CL = 231.854 1-SC-P2 INV IN = 231.172	E: 368930.51 N: 889458.32				

PIPE DATA - SITE C - SW-1								
PIPE ID	TYPE	2D LENGTH	3D LENGTH	GRADE	US IL	DS IL		
1-SC-P1	EUROFLO DN500 (ID420) SN16	4.6	4.7	25.00%	232.55	231.41		
1-SC-P2	EUROFLO DN500 (ID420) SN16	23.1	23.1	0.70%	231.33	231.17		

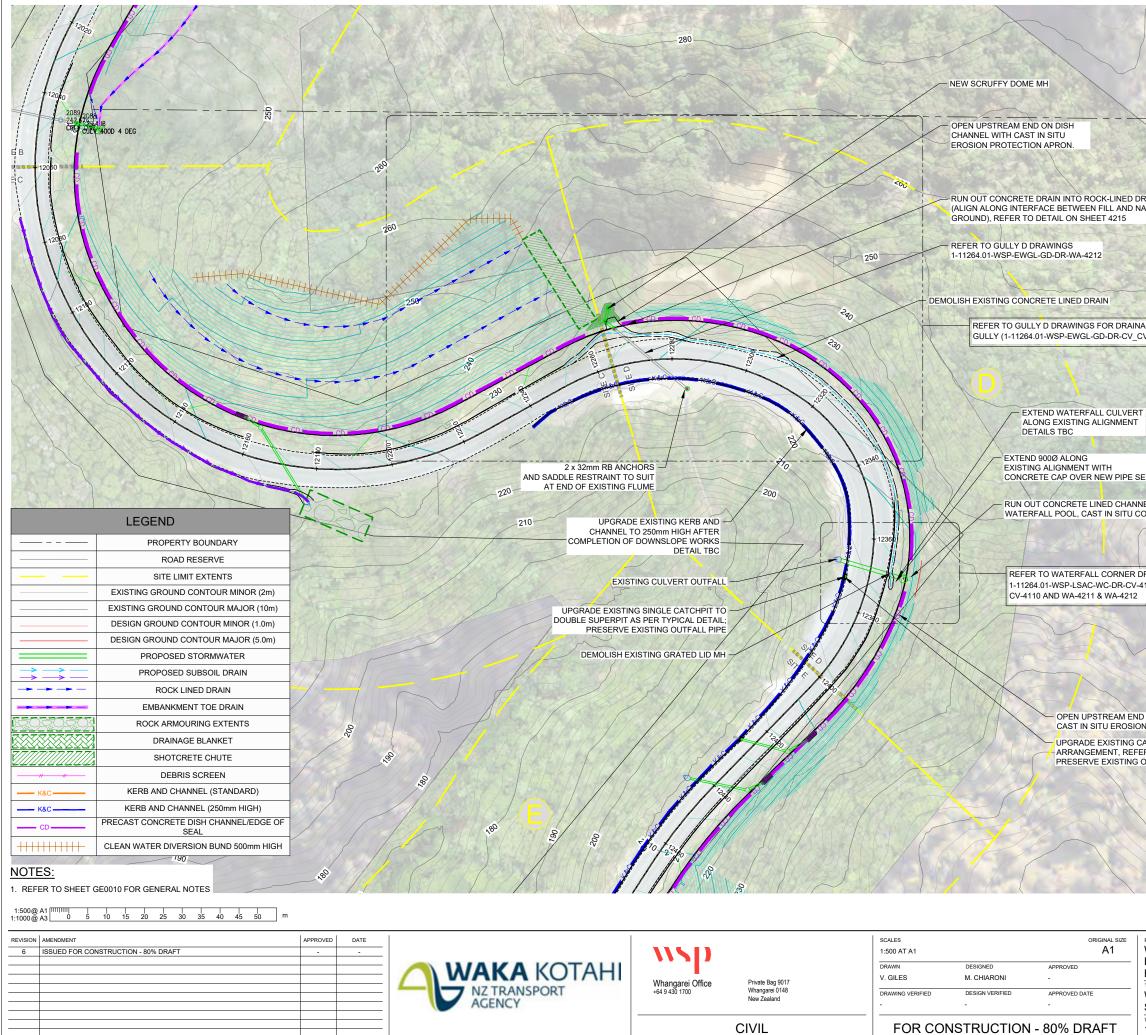
### 1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

1:100 @ A1 4 5 6 7 8 9 10 m

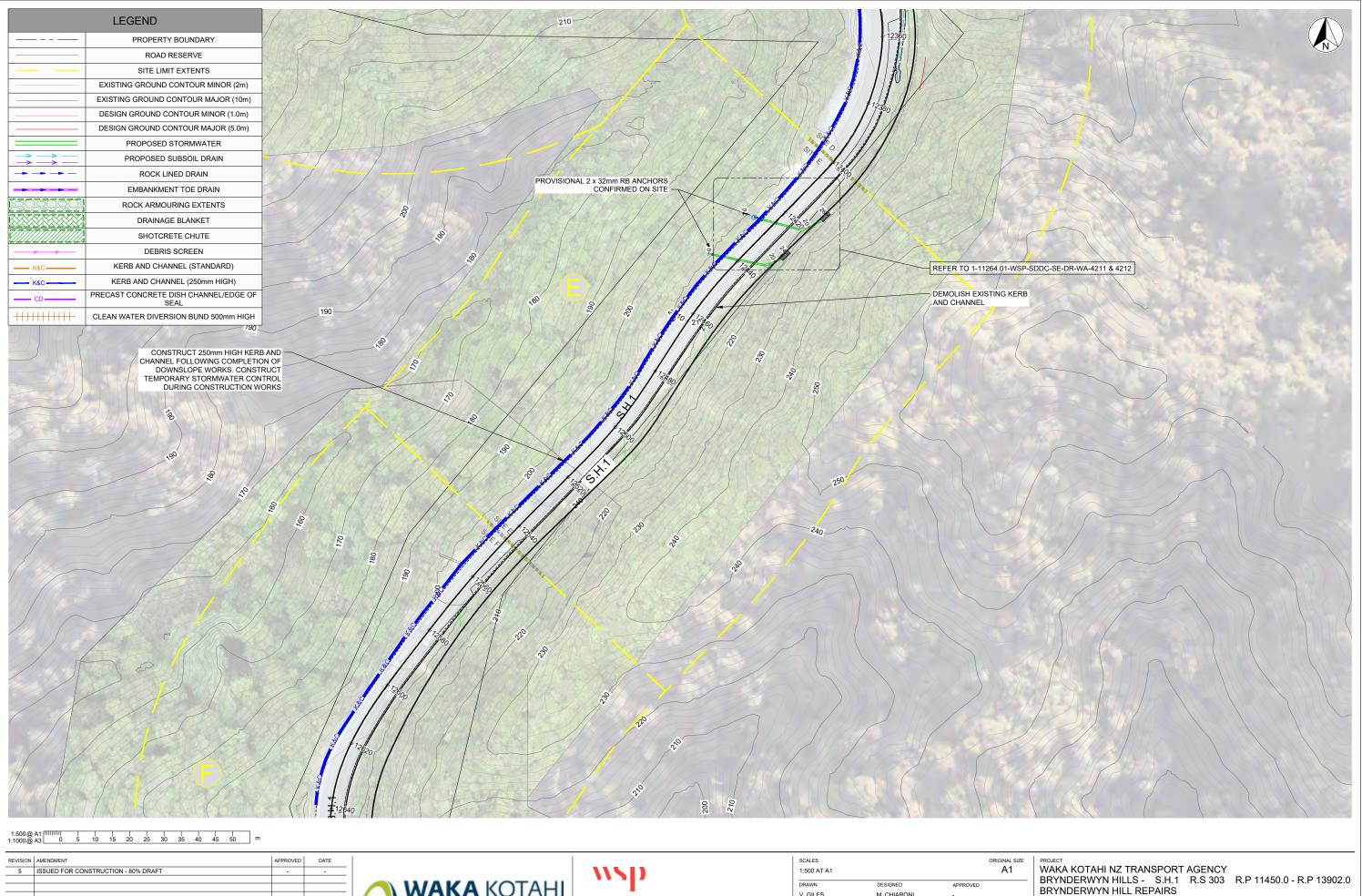
REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE C - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3

	Whangarei Office	Private Bag 9017 Whangarei 0148 New Zealand	DRAWN V. GILES DRAWING VERIFIED	DESIGNED M. CHIARONI DESIGN VERIFIED	APPROVED - APPROVED DATE	BRYNDER BRYNDER TITLE SITE C
AGENCY		New Zealanu	-	-	-	DRAINAGE
			_			WSP PROJECT NO. (
		WATER	FOR CO	NSTRUCTION	- 80% DRAFT	1-11264.01


C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SC-DR-WA-4211.dwg WA4211 Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:38:50 am

KOTAHI NZ TRANSPORT AGENCY DERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 DERWYN HILL REPAIRS

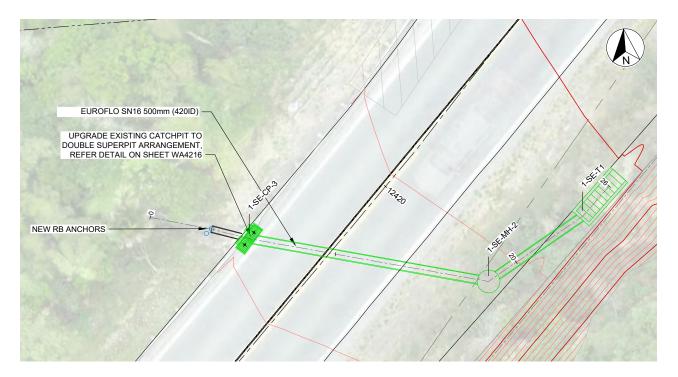

## GE PLAN AND LONGSECTION

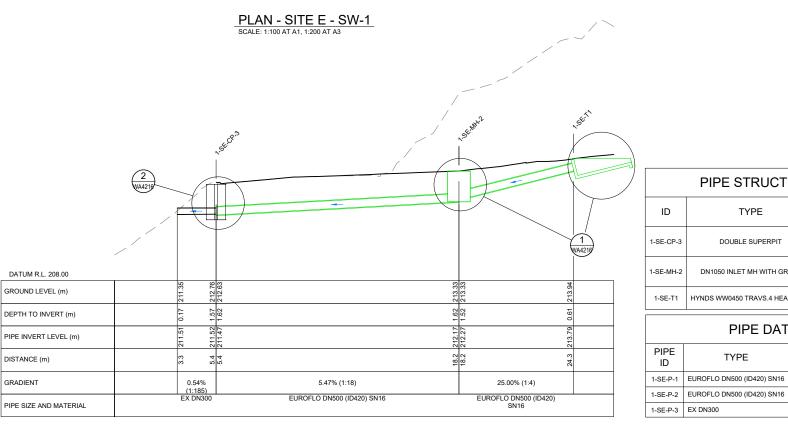
.01-WSP-SDDC-SC-DR

SHEET NO.



AIN TURAL
GE DETAILS WITHIN (4101 TO CV4108) CTION EL INTO INCRETE RAMP.
RAWING SET 101 TO ON DISH CHANNEL WITH PROTECTION APRON.
ATCHPIT TO DOUBLE SUPERPIT R DETAIL ON SHEET OA-DR-WA4216 DUTFALL
PROJECT WAKA KOTAHI NZ TRANSPORT AGENCY BRYNDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 BRYNDERWYN HILL REPAIRS
WATER - DRAINAGE PLANS SITE D - PLAN WSP PROJECT NO. (SUB-PROJECT) 1-11264.01-WSP-SDDC-SD-DR-WA4000 SHEET 04 1





REVISION	AMENDMENT ISSUED FOR CONSTRUCTION - 80% DRAFT	APPROVED	DATE		\\SD		SCALES 1:500 AT A1		ORIGINAL SIZE
					Whangarei Office +64 9 430 1700	Private Bag 9017	DRAWN V. GILES	designed M. Chiaroni	APPROVED -
				NZ TRANSPORT AGENCY	+64 9 430 1700	Whangarei 0148 New Zealand	DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE
						CIVIL	FOR CO	NSTRUCTION	- 80% DRAFT

WATER - DRAINAGE PLANS SITE E - PLAN

1-11264.01-WSP-SDDC-SE-DR-WA4000

SHEET NO.





1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

1:100@A1 4 5 6 7 8 9 10 m

REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE E - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3

WSD		SCALES 1:100 AT A1, 1:200 AT	ORIGINAL SIZE	PROJECT WAKA	
		DRAWN	DESIGNED	APPROVED	BRYND
Whangarei Office	Private Bag 9017	V. GILES	M. CHIARONI	-	
+64 9 430 1700	Whangarei 0148 New Zealand	DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE	SITEE
	New Zedidilu	-	-	-	DRAIN
	WATER	FOR CO	NSTRUCTION	- 80% DRAFT	WSP PROJEC 1-1126

WAKA KOTAHI

NZ TRANSPORT AGENCY

## A KOTAHI NZ TRANSPORT AGENCY NDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 DERWYN HILL REPAIRS

NAGE PLAN AND LONGSECTION - SHEET 1

**PIPE STRUCTURES - SITE E - SW-1** 

HYNDS WW0450 TRAVS.4 HEADWALL CL = 214.465 1-SE-P-1 INV OUT = 213.789

PIPE DATA - SITE E - SW-1

2D

6.1

12.9

2.1

DETAILS

CL = 213.093 1-SE-P-2 INV IN = 211.468 1-SE-P-3 INV OUT = 211.522

CL = 213.796 1-SE-P-1 INV IN = 212.275 1-SE-P-2 INV OUT = 212.171

3D

6.2

12.9

2.1

LENGTH LENGTH GRADE US IL DS IL

TYPE

DOUBLE SUPERPIT

DN1050 INLET MH WITH GRATE

TYPE

FCT NO 264.01-WSP-SDDC-SE-DR

WA4211

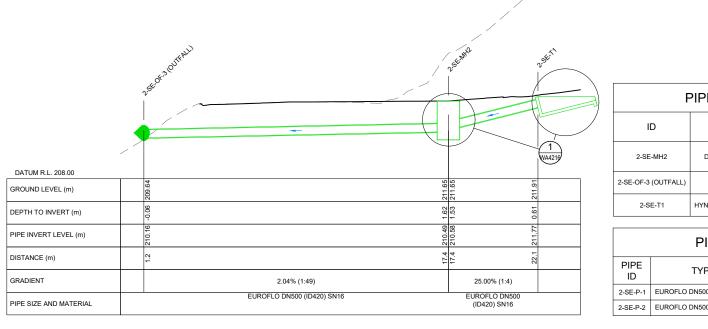
CO-ORD

(CENTROID)

E: 369045.42 N: 889395.62


E: 369057.84 N: 889392.34

E: 369063.09 N: 889395.37


25.00% 213.79 212.27

5.47% 212.17 211.47

0.54% 211.52 211.51



PLAN - SITE E - SW-2 SCALE: 1:100 AT A1, 1:200 AT A3



1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

1:100@A1 4 5 6 7 8 9 10 m

REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE E - SW-2 SCALE: 1:100 AT A1, 1:200 AT A3

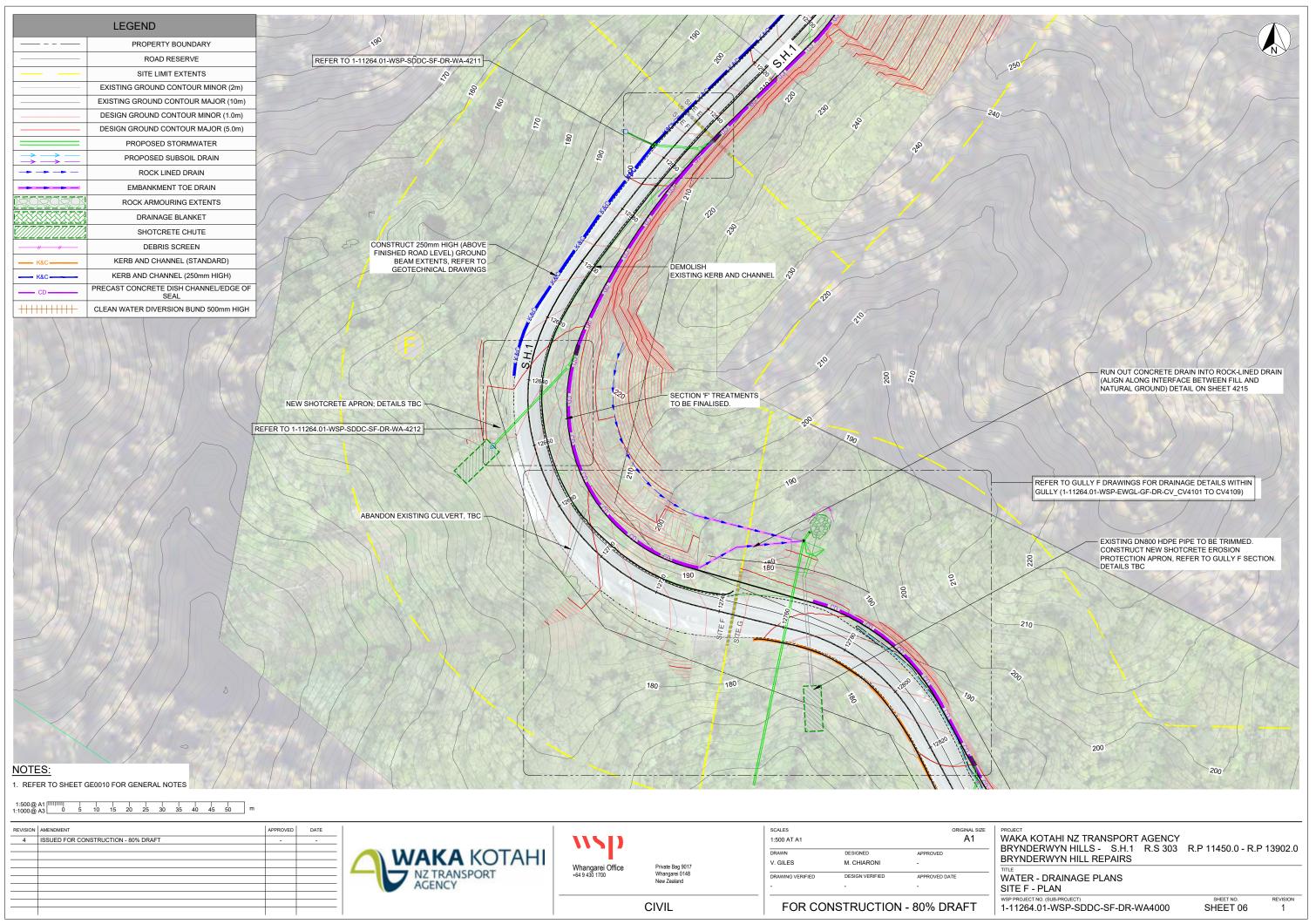
VAKA KOTAHI NZ TRANSPORT AGENCY	NSD		SCALES 1:100 AT A1, 1:200 AT	ORIGINAL SIZE	
	Whangarei Office Private Bag 9017 +64 9 430 1700 Whangarei 0148 New Zealand	DRAWN	DESIGNED	APPROVED	
		Private Bag 9017	V. GILES	M. CHIARONI	
			DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE
		-	-	-	
	V	VATER	FOR CO	NSTRUCTION	I - 80% DRAFT

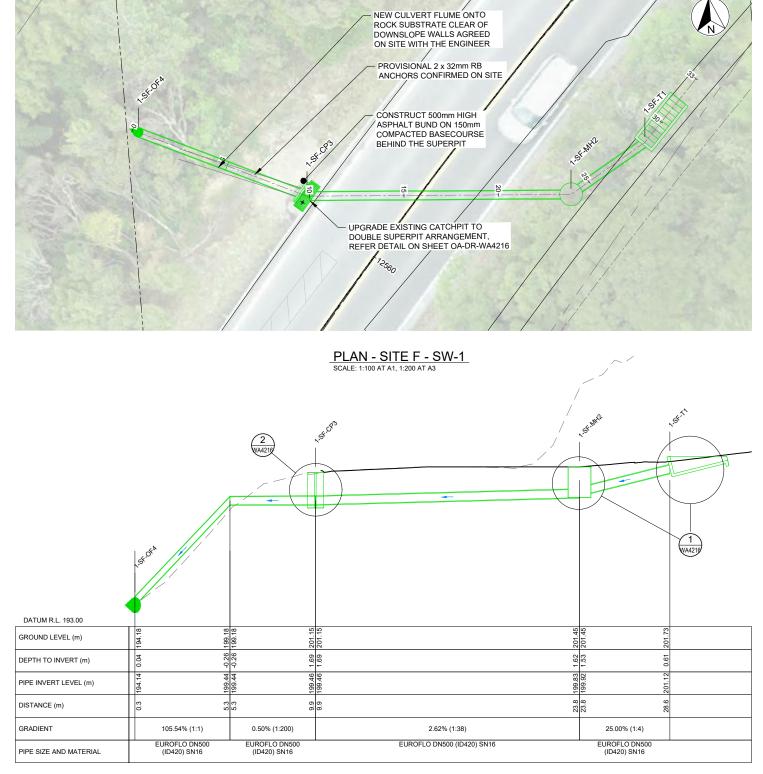
WAKA

### PIPE STRUCTURES - SITE E - SW-2

TYPE		DETAILS	CO-ORD (CENTROID)
	DN1050 INLET MH WITH GRATE	CL = 212.116 2-SE-P-1 INV IN = 210.584 2-SE-P-2 INV OUT = 210.491	E: 369047.10 N: 889382.14
	OUTFALL	CL = 212.373 2-SE-P-2 INV IN = 210.162	E: 369031.31 N: 889385.36
	HYNDS WW0450 TRAVS.4 HEADWALL	CL = 212.340 2-SE-P-1 INV OUT = 211.766	E: 369051.39 N: 889384.13

### PIPE DATA - SITE E - SW-2


TYPE	2D LENGTH	3D LENGTH	GRADE	US IL	DS IL
D DN500 (ID420) SN16	4.7	4.9	25.00%	211.77	210.58
D DN500 (ID420) SN16	16.1	16.1	2.04%	210.49	210.16


A KOTAHI NZ TRANSPORT AGENCY NDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 NDERWYN HILL REPAIRS

NAGE PLAN AND LONGSECTION - SHEET 2

64.01-WSP-SDDC-SE-DR

WA4212





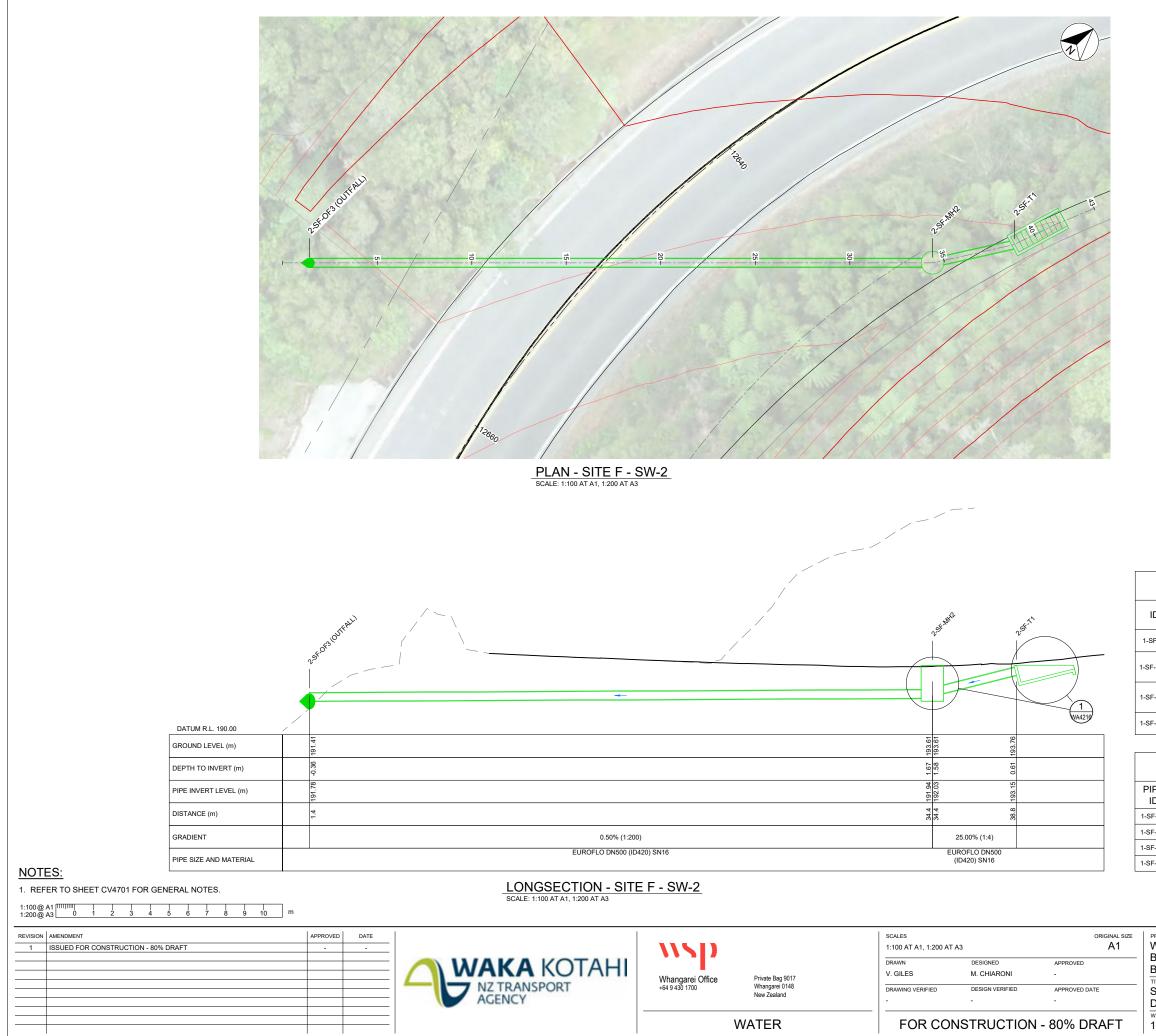
### 1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE F - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3

wsp		SCALES 1:100 AT A1, 1:200 AT DRAWN	A3
Whangarei Office +64 9 430 1700	Private Bag 9017 Whangarei 0148 New Zealand	V. GILES	M.

WATER


SCALES ORI 1:100 AT A1, 1:200 AT A3		ORIGINAL SIZ	WAKA KOTAHI NZ TRANSPORT AGENCY		D 40000
DRAWN	DESIGNED	APPROVED	<ul> <li>BRYNDERWYN HILLS - S.H.1 R.S 303 R.F</li> <li>BRYNDERWYN HILL REPAIRS</li> </ul>	2 11450.0 - R.	P 13902
V. GILES	M. CHIARONI	-			
DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE			
-	-	-	DRAINAGE PLAN AND LONGSECTION - SHEE	T 1	
FOR CO	NSTRUCTION	I - 80% DRAFT	WSP PROJECT NO. (SUB-PROJECT) 1-11264.01-WSP-SDDC-SF-DR	SHEET NO. WA4211	REVISIO

Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:43:14 am C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SF-DR-WA-4211.dwg WA4211

AGENCY

	PIPE DATA - SITE F - SW-1					
PIPE ID	TYPE	2D LENGTH	3D LENGTH	GRADE	US IL	DS IL
1-SF-P-1	EUROFLO DN500 (ID420) SN16	4.8	4.9	25.00%	201.12	199.92
1-SF-P-2	EUROFLO DN500 (ID420) SN16	14.0	14.0	2.62%	199.83	199.46
1-SF-P-3	EUROFLO DN500 (ID420) SN16	4.5	4.5	0.50%	199.46	199.44
1-SF-P-4	EUROFLO DN500 (ID420) SN16	5.0	7.3	105.54%	199.44	194.14

PIPE STRUCTURES - SITE F - SW-1						
ID	TYPE	CO-ORD (CENTROID)				
1-SF-T1	HYNDS WW0450 TRAVS.4 HEADWALL	CL = 202.002 1-SF-P-1 INV OUT = 201.117	E: 368976.54 N: 889296.86			
1-SF-MH2	DN1050 INLET MH WITH GRATE	CL = 201.451 1-SF-P-1 INV IN = 199.923 1-SF-P-2 INV OUT = 199.826	E: 368972.42 N: 889294.44			
1-SF-CP3	DOUBLE SUPERPIT	CL = 201.150 1-SF-P-2 INV IN = 199.461 1-SF-P-3 INV OUT = 199.461	E: 368958.49 N: 889295.48			
1-SF-OF4	OUTFALL	CL = 194.601 1-SF-P-4 INV IN = 194.136	E: 368949.87 N: 889299.58			



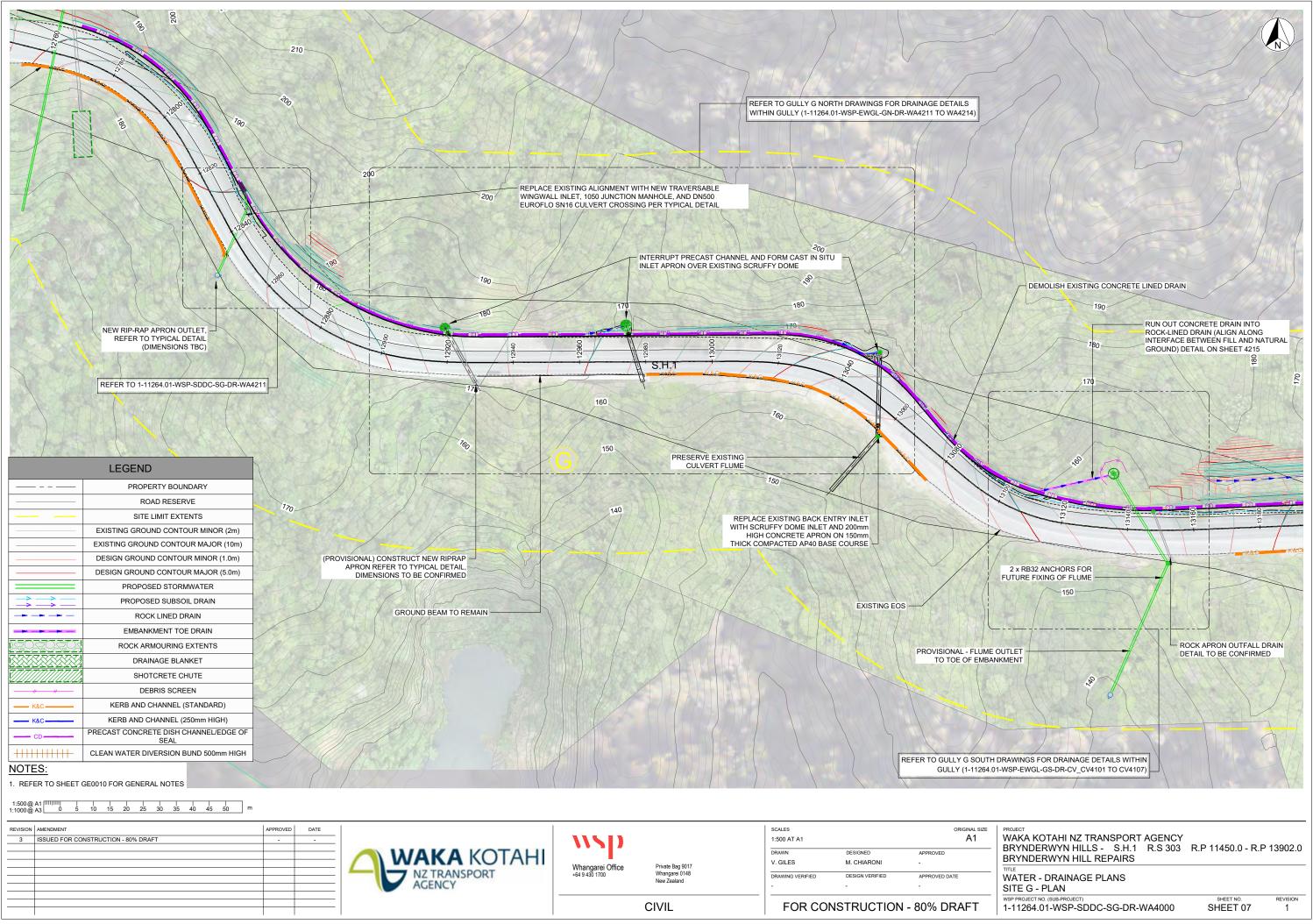
Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:43:40 am C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SF-DR-WA-4212.dwg WA4212

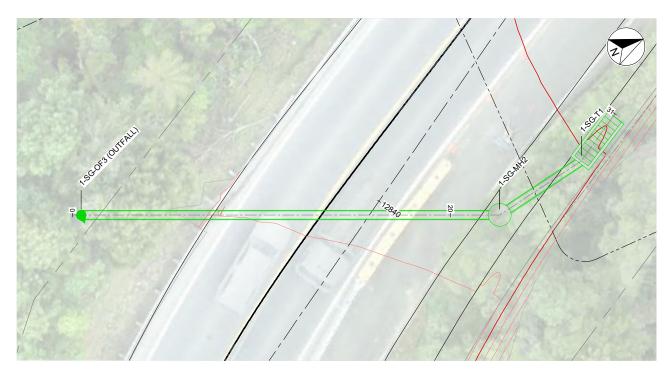
PIPE STRUCTURES - SITE F - SW-1					
ID	TYPE	CO-ORD (CENTROID)			
SF-T1	HYNDS WW0450 TRAVS.4 HEADWALL	CL = 202.002 1-SF-P-1 INV OUT = 201.117	E: 368976.54 N: 889296.86		
F-MH2	DN1050 INLET MH WITH GRATE	CL = 201.451 1-SF-P-1 INV IN = 199.923 1-SF-P-2 INV OUT = 199.826	E: 368972.42 N: 889294.44		
F-CP3	DOUBLE SUPERPIT	CL = 201.150 1-SF-P-2 INV IN = 199.461 1-SF-P-3 INV OUT = 199.461	E: 368958.49 N: 889295.48		
F-OF4	OUTFALL	CL = 194.601 1-SF-P-4 INV IN = 194.136	E: 368949.87 N: 889299.58		

### PIPE DATA - SITE F - SW-1

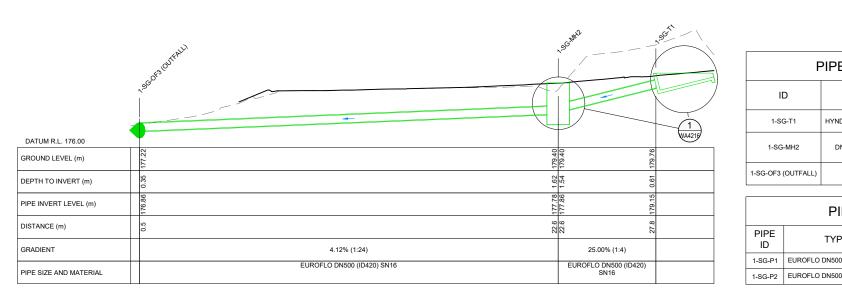
IPE ID	TYPE	2D LENGTH	3D LENGTH	GRADE	US IL	DS IL
6F-P-1	EUROFLO DN500 (ID420) SN16	4.8	4.9	25.00%	201.12	199.92
SF-P-2	EUROFLO DN500 (ID420) SN16	14.0	14.0	2.62%	199.83	199.46
SF-P-3	EUROFLO DN500 (ID420) SN16	4.5	4.5	0.50%	199.46	199.44
6F-P-4	EUROFLO DN500 (ID420) SN16	5.0	7.3	105.54%	199.44	194.14

WAKA KOTAHI NZ TRANSPORT AGENCY BRYNDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 BRYNDERWYN HILL REPAIRS


SITE F


DRAINAGE PLAN AND LONGSECTION - SHEET 2

1-11264.01-WSP-SDDC-SF-DR


WA4212

REVISION 1





PLAN - SITE G - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3



### 1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

1:100@A1 4 5 6 7 8 9 10 m

REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE G - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3

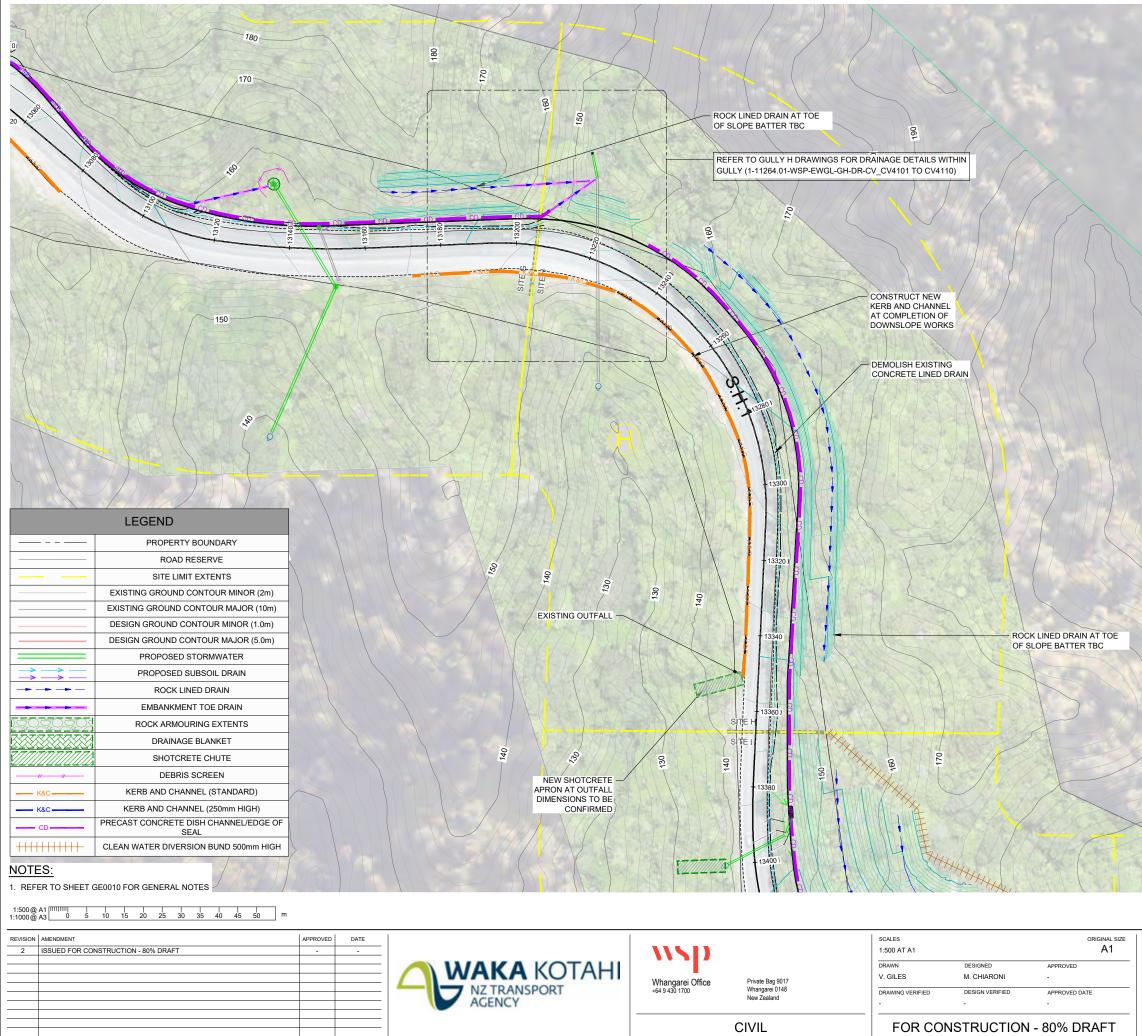
APPROVED	DATE		<b>NSD</b>		SCALES 1:100 AT A1, 1:200 AT	SCALES 1:100 AT A1, 1:200 AT A3		ORIGINAL SIZE PROJECT
			Whangarei Office Private Bag 9017 +64 9 430 1700 Whangarei 0148 New Zealand		DRAWN V. GILES	DESIGNED M. CHIARONI	APPROVED	BRYNDI BRYNDI
				DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE	SITE G	
			V	VATER	FOR CO	NSTRUCTION	I - 80% DRAFT	WSP PROJE

Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:45:28 am C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SG-DR-WA-4211.dwg WA4211

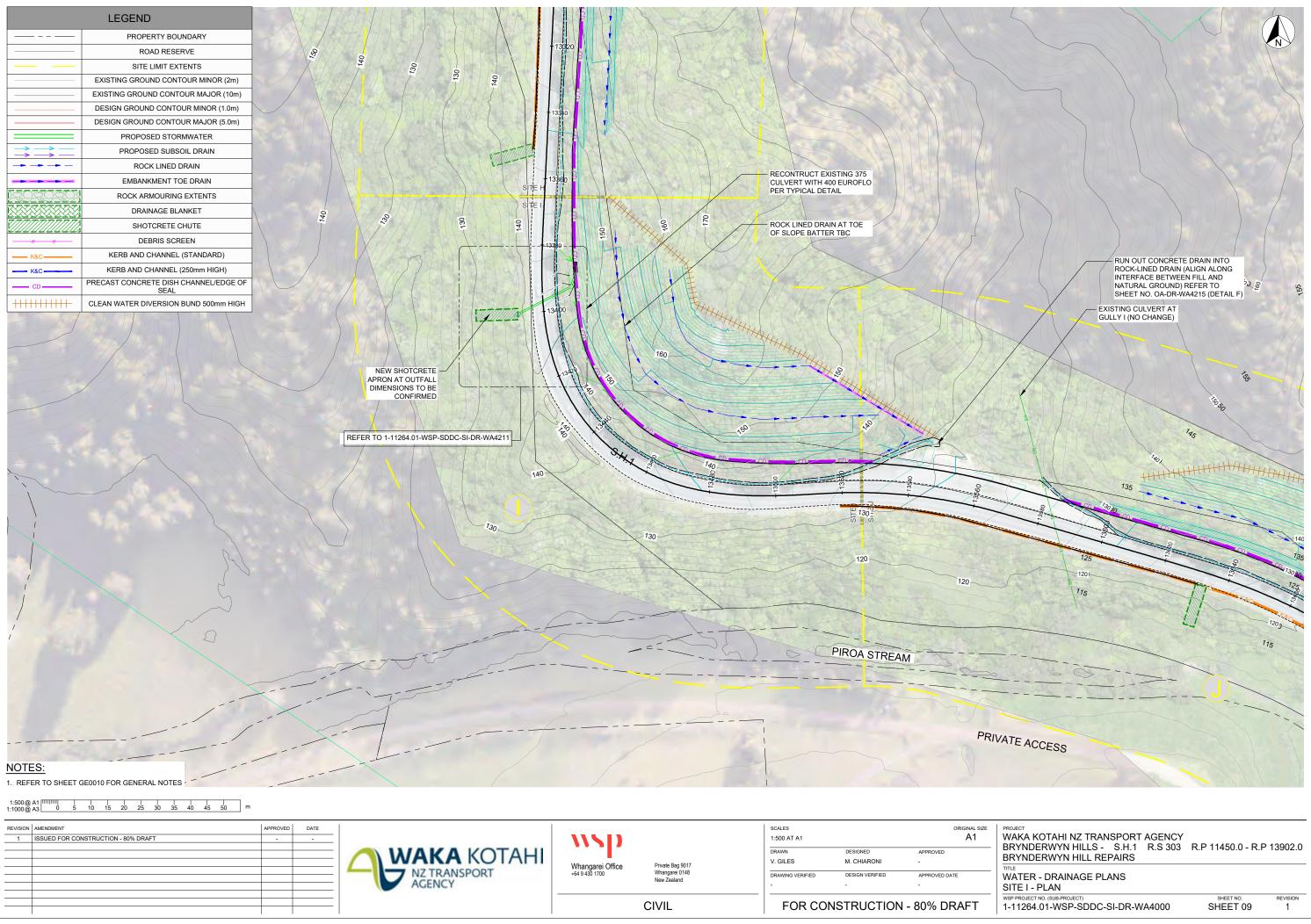
### PIPE STRUCTURES - SITE G - SW-1

TYPE		DETAILS	CO-ORD (CENTROID)	
	HYNDS WW0450 TRAVS.4 HEADWALL	CL = 179.937 1-SG-P1 INV OUT = 179.152	E: 369055.85 N: 889107.30	
	DN1050 INLET MH WITH GRATE	CL = 179.413 1-SG-P1 INV IN = 177.858 1-SG-P2 INV OUT = 177.775	E: 369056.67 N: 889102.19	
	OUTFALL	CL = 179.144 1-SG-P2 INV IN = 176.863	E: 369047.55 N: 889082.00	

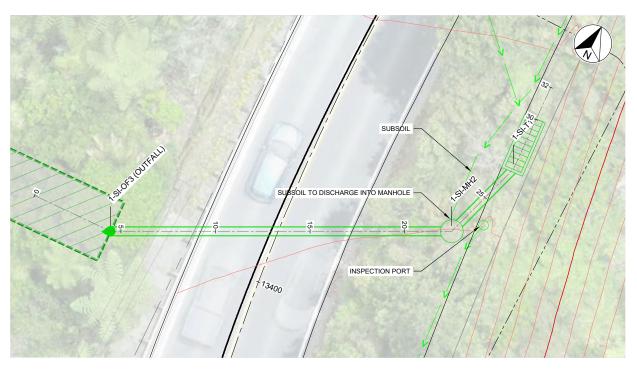
### PIPE DATA - SITE G - SW-1


TYPE	2D LENGTH	3D LENGTH	GRADE	US IL	DS IL
O DN500 (ID420) SN16	5.2	5.3	25.00%	179.15	177.86
O DN500 (ID420) SN16	22.2	22.2	4.12%	177.78	176.86

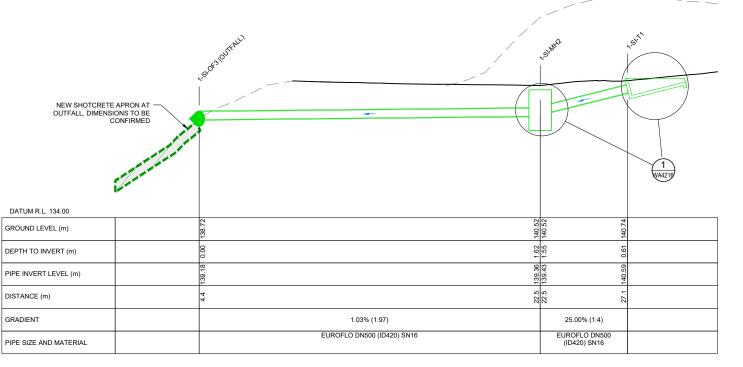
A KOTAHI NZ TRANSPORT AGENCY NDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 NDERWYN HILL REPAIRS


### G NAGE PLAN AND LONGSECTION FCT NO (

64.01-WSP-SDDC-SG-DR


SHEET NO.




PROJECT WAKA KOTAHI NZ TRANSPORT AGENCY BRYNDERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 BRYNDERWYN HILL REPAIRS
ITTLE           WATER - DRAINAGE PLANS           SITE H - PLAN           WSP PROJECT NO. (SUB-PROJECT)           SHEET NO.           1-11264.01-WSP-SDDC-SH-DR-WA4000           SHEET 08



C:\DC\ACCDocs\WSP ANZ projects (AMER)\1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SI-DR-WA-4000.dwg WA4000



PLAN - SITE I - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3



NOTES:

1. REFER TO SHEET CV4701 FOR GENERAL NOTES.

1:100@A1 4 5 6 7 8 9 10 m

REVISION	AMENDMENT	APPROVED	DATE
1	ISSUED FOR CONSTRUCTION - 80% DRAFT	-	-

LONGSECTION - SITE I - SW-1 SCALE: 1:100 AT A1, 1:200 AT A3

TAHI	wsp		SCALES 1:100 AT A1, 1:200 AT	ORIGINAL SIZE	PROJECT	
			DRAWN	DESIGNED	APPROVED	BRYNDI BRYNDI
	Whangarei Office	Private Bag 9017	V. GILES	M. CHIARONI	-	
	+64 9 430 1700	Whangarei 0148 New Zealand	DRAWING VERIFIED	DESIGN VERIFIED	APPROVED DATE	SITE
			-	-	-	DRAINA
		WATER	FOR CO	NSTRUCTION	I - 80% DRAFT	WSP PROJECT 1-11264

Original sheet size A1 (841x594) Plot Date 2024-02-24 at 10:48:03 am C:\DC\ACCDocs\WSP ANZ projects (AMER)1-11264.01 Brynderwyn Hill Repairs\Project Files\01_WIP\WA\Sheets\1-11264.01-WSP-SDDC-SI-DR-WA-4211.dwg WA4211

WAKA KO

NZ TRANSPORT AGENCY

# KOTAHI NZ TRANSPORT AGENCY DERWYN HILLS - S.H.1 R.S 303 R.P 11450.0 - R.P 13902.0 DERWYN HILL REPAIRS

PIPE STRUCTURES - SITE I - SW-1

TYPE

HYNDS WW0450 TRAVS.4 HEADWALL

DN1050 INLET MH WITH GRATE

OUTFALL

PIPE DATA - SITE I - SW-1

2D

4.6

18.1

3D

4.8

18.1

DETAILS

CL = 141.364 1-SI-P1 INV OUT = 140.590

CL = 140.750 1-SI-P1 INV IN = 139.435 1-SI-P2 INV OUT = 139.362

CL = 139.614 1-SI-P2 INV IN = 139.175

LENGTH LENGTH GRADE US IL DS IL

25.00%

AGE PLAN AND LONGSECTION

1.01-WSP-SDDC-SI-DR

TYPE

1-SI-P1 EUROFLO DN500 (ID420) SN16

1-SI-P2 EUROFLO DN500 (ID420) SN16

ID

1-SI-T1

1-SI-MH2

1-SI-OF3 (OUTFALL)

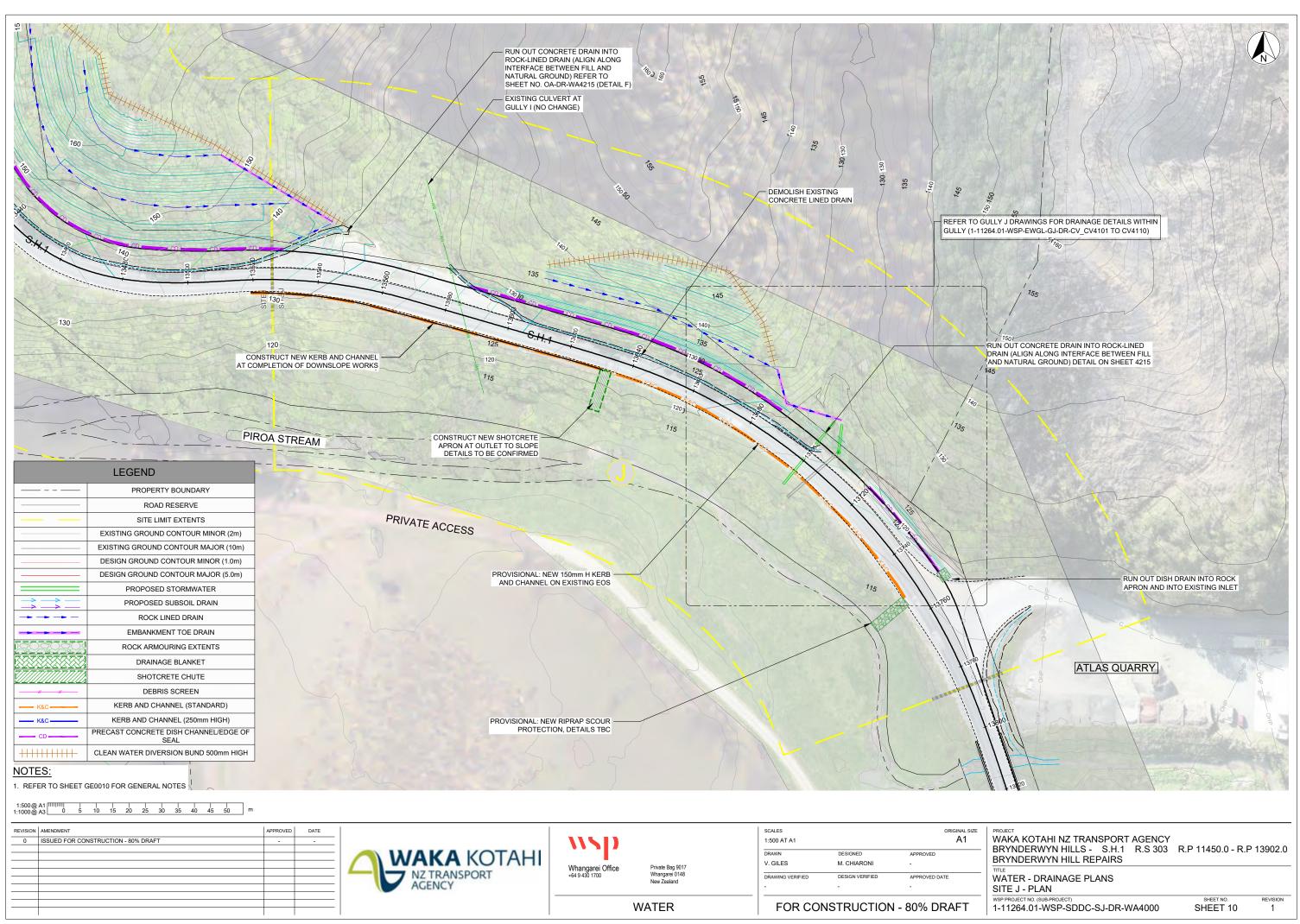
PIPE

ID

SHEET NO WA4211 REVISION 1

CO-ORD

(CENTROID)

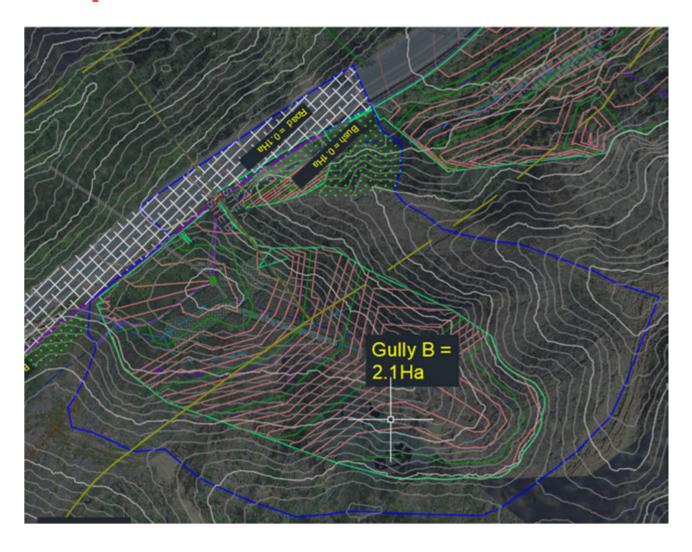

E: 369455.02 N: 888854.68

E: 369453.62 N: 888850.28

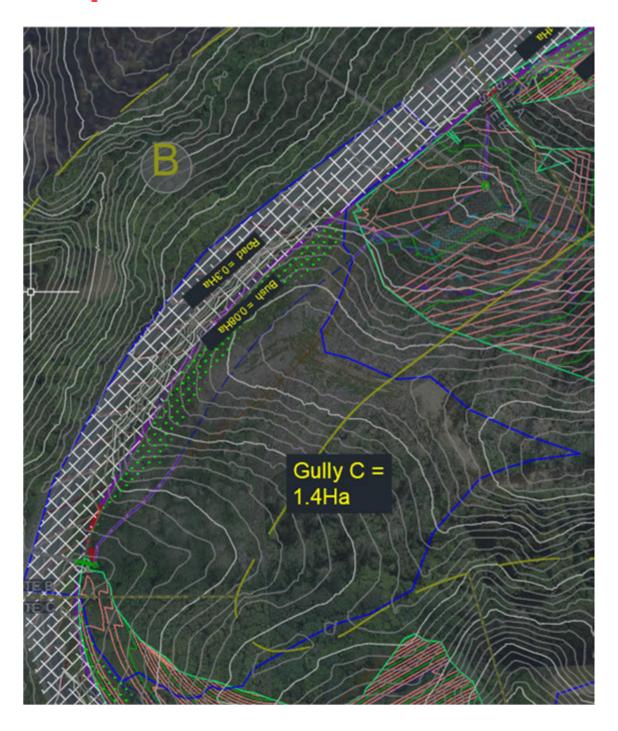
E: 369437.58 N: 888842.00

140.59 139.43

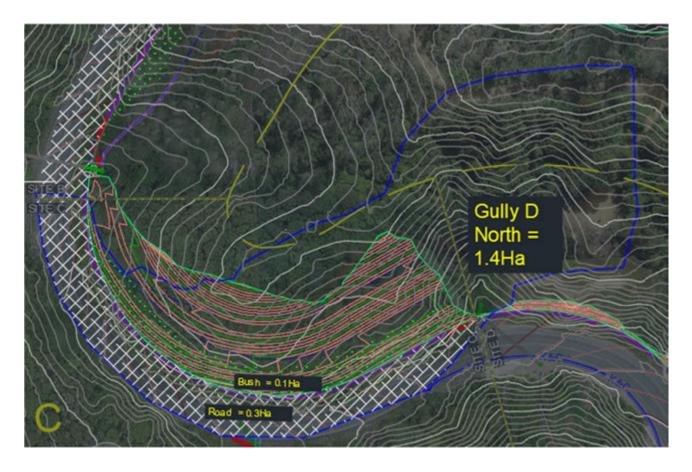
1.03% 139.36 139.18




## APPENDIX E – CHATCHMENT MEASUREMENT AREAS





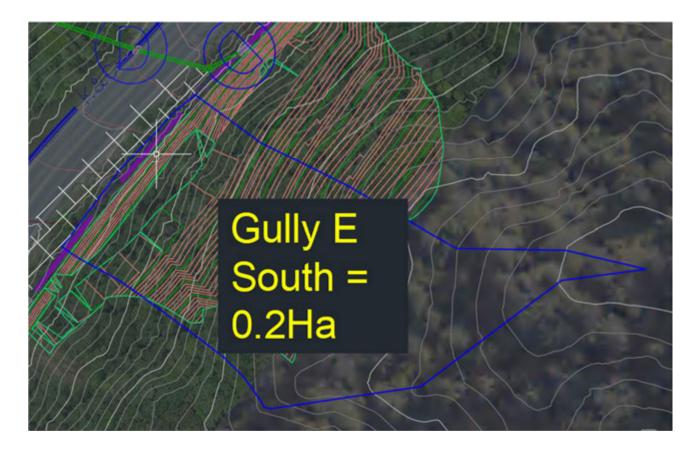




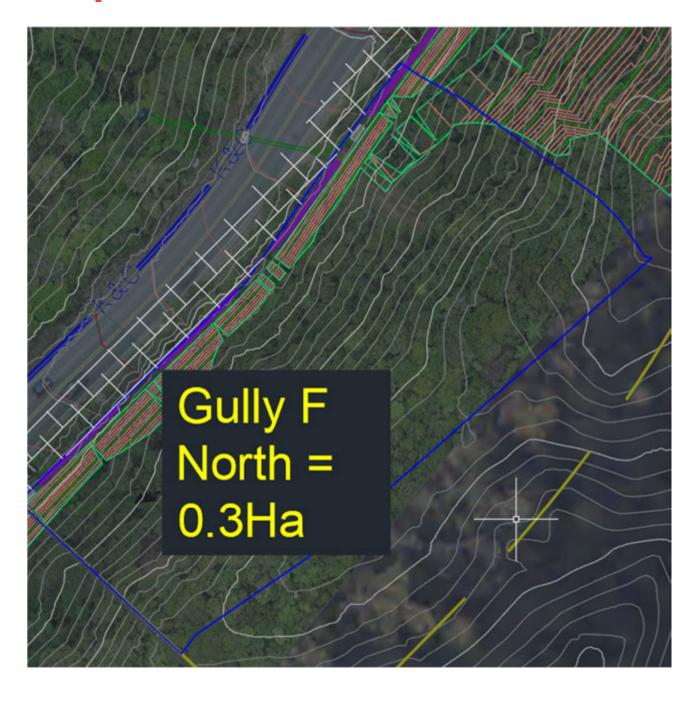




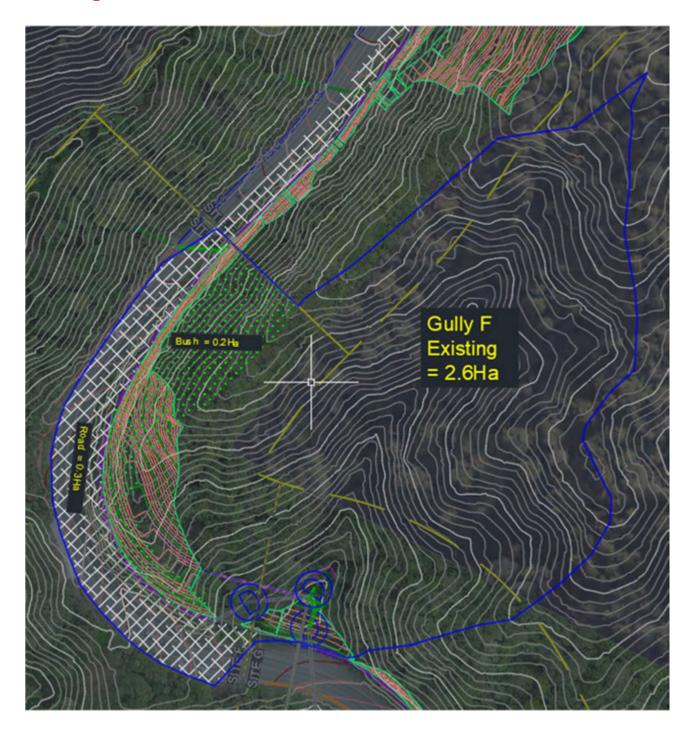


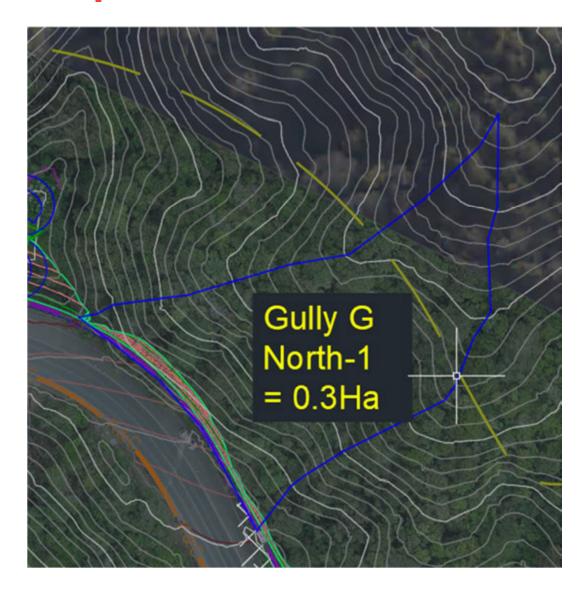


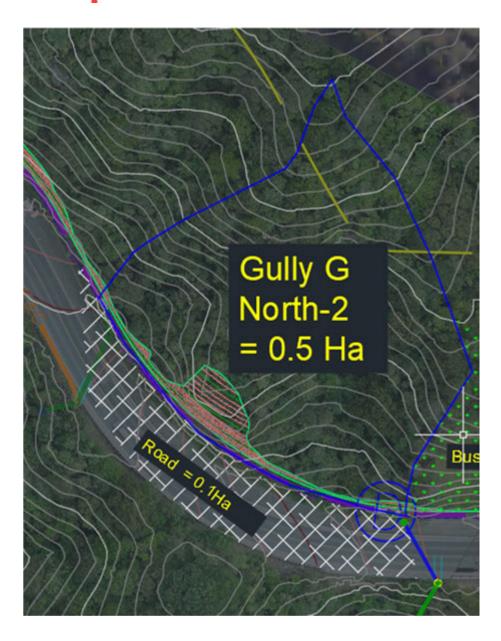






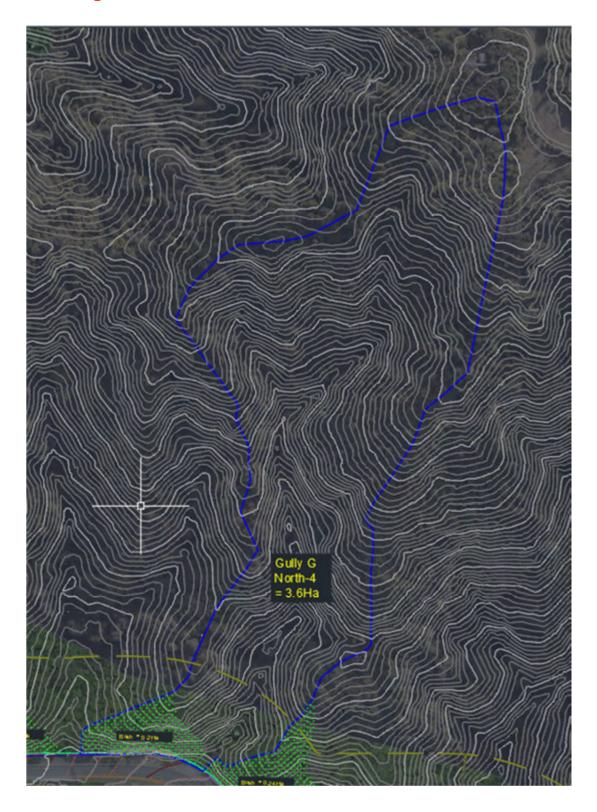













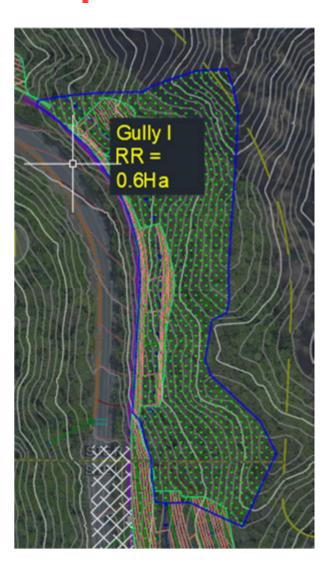










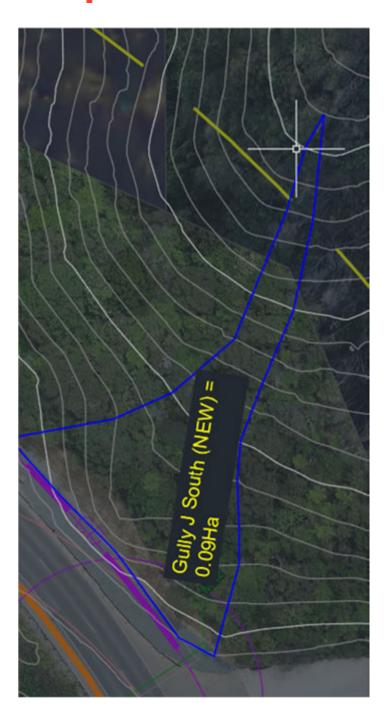





















## APPENDIX F – STRUCTURAL CALCS

# **\ \ \ )** DESIGN LIVE LOADS

Γ

em	Description	Symbol	Unit	Shallo Cover	Xtra shallow	Reference
TE A	ND DESIGN CONDITIONS			0.00	0.50	
1 2	Cover Single or dual lane used for design	H	m	0.60 Single	0.50 Single	
3 3	ACH A - DESIGN LIVE LOAD USING NZTA BRIDGE MANUAL LOAD CLAUSE 4. Design live loads using NZTA BM clause 4.10.3	W _q	kPa	115.99	160.68	NZBM 4.10.3
PRC	ACH B - DESIGN LIVE LOAD USING AS/NZS 2566.1 LOAD DISTRIBUTION AND Single Lane	IMPACT F	ACTOR			
4 5	Live load impact factor / dynamic load factor Lane Load (does not have load factor for HN or stress reduction factor for HO)	α		1.31	1.33	(See below for references) NZBM 4.10.2
-	Lane load at top of pipe	W _{q (lane)}	kPa	4.59	4.64	NZDW14.10.2
6	HN Loading Load overlaps			-	-	
	Length of base of load prism measured in relation to the direction of travel of the vehicle Perpendicular	L ₁	m	1.37	1.23	
	Parallel	L ₂	m	1.07	0.93	
	HN axle load at top of pipe Load factor	W _{q(axle)}	kPa	53.62 1.35	70.16 1.35	
7	HN design live load HO Loading - Alternative a	Wq	kPa	78.58	100.98	
	Load overlaps Length of base of load prism measured in relation to the direction of travel of the vehicle			wheel	wheel	
	Perpendicular	L ₁	m	3.87	3.73	
	Parallel HO axle load at top of pipe - Alternative a	L ₂ W _{q(axle)}	m kPa	1.07 75.93	0.93 92.29	
	Stress reduction factor HO design live load - Alternative a	Wq	kPa	1.00 80.51	1.00 96.93	
8	HO Loading - Alternative b	vvq	кга			
	Load overlaps Length of base of load prism measured in relation to the direction of travel of the vehicle			-	-	
	Perpendicular Parallel	L ₁ L ₂	m m	1.77 1.47	1.63 1.33	
	HO axle load at top of pipe - Alternative b	W _{q(axle)}	kPa	60.42	73.85	
	Stress reduction factor 1/1.33 - ref. 1994 TNZ BM HO design live load - Alternative b	Wq	kPa	1.00 65.00	1.00 78.48	
9	Maximum average intensity of design live loads (worse case)	Wq	kPa	80.51	100.98	
10	Dual Lane (two 3 m lanes with nominated lane gap) Lane Load (does not have load factor for HN or stress reduction factor for HO)					NZBM 4.10.2
11	Lane load at top of pipe Axle Loading - 2 x HN	W _{q (lane)}	kPa	4.59	4.64	
	Load overlaps Length of base of load prism measured in relation to the direction of travel of the vehicle			Lane	Lane	
	Perpendicular - HN + HN	L ₁	m	6.17	6.03	
	Parallel Axle load at top of pipe	L ₂ W _{q(axle)}	m kPa	1.07 47.62	0.93 57.06	
	Load factor Dual lane load reduction factor	q(arris)		1.35 0.90	1.35 0.90	
	Dual lane design live load - 2 x HN	Wq	kPa	63.43	74.96	
12	Axle Loading - HO (HO Alt(b) + HN) Load overlaps			Lane	Lane	
	Length of base of load prism measured in relation to the direction of travel of the vehicle Perpendicular - HO + HN	L ₁	m	6.52	6.38	
	Parallel	L ₂	m	1.27	1.13	
	Unfactored axle load at top of pipe Stress reduction factor	W _{q(axle)}	kPa	56.95 1.00	66.51 1.00	
	Dual land load reduction factor Dual lane design live load - HO + HN	Wq	kPa	0.90 55.38	0.90 64.03	
13	Maximum average intensity of design live loads (worse case)	Wq	kPa	63.43	74.96	
4	Design Live Load Worst case - single or dual lanes			Single	Single	
5 6	Single or dual lane used for design Design live load	Wq	kPa	Single 80.51	Single 100.98	
PRC	ACH C - DESIGN LIVE LOAD USING NZTA BRIDGE MANUAL LOAD DISTRIBUT Single Lane	ION AND I	MPACT	FACTOR		
7	Live load impact factor	α		1.12	1.15	
8	Lane Load (does not have load factor for HN or stress reduction factor for HO) Lane load at top of pipe	W _{q (lane)}	kPa	3.92	4.03	NZBM 4.10.2
9	HN Loading Load overlaps			-	-	
	Length of base of load prism measured in relation to the direction of travel of the vehicle Perpendicular	L ₁	m	1.08	0.96	
	Parallel	L ₁	m	0.78	0.66	
	HN axle load at top of pipe Load factor	W _{q(axle)}	kPa	79.77 1.35	108.90 1.35	
0	HN design live load	Wq	kPa	112.98	152.45	
20	HO Loading - Alternative a Load overlaps			wheel	wheel	
	Length of base of load prism measured in relation to the direction of travel of the vehicle Perpendicular	L ₁	m	3.58	3.46	
	Parallel HO axle load at top of pipe - Alternative a	L ₂	m kPa	0.78 96.26	0.66	
	Stress reduction factor	W _{q(axle)}		1.00	1.00	
!1	HO design live load - Alternative a HO Loading - Alternative b	Wq	kPa	100.18	124.89	
	Load overlaps Length of base of load prism measured in relation to the direction of travel of the vehicle			-		
	Perpendicular	L ₁	m	1.48	1.36	
	Parallel HO axle load at top of pipe - Alternative b	L ₂ W _{q(axle)}	m kPa	1.18 76.96	1.06 95.73	
	Stress reduction factor HO design live load - Alternative b	Wq	kPa	1.00 80.88	1.00 99.75	
22	Maximum average intensity of design live loads (worse case)	w _q	kPa kPa	112.98	152.45	
23	Comparison of live loads - w _q NZTA over w _q AS/NZS Dual Lane (two 3 m lanes with nominated lane gap)	w _q /w _q		1.40	1.51	
24	Lane Load (does not have load factor for HN or stress reduction factor for HO)					NZBM 4.10.2
	Lane load at top of pipe Axle Loading - 2 x HN	W _{q (lane)}	kPa	3.92	4.03	

# **DESIGN LIVE LOADS**

### Worksheet Description:

				Challe Cover	Vire challour	Deference
ltem	Description	Symbol	Unit	Shallo Cover	Xtra shallow	Reference
	Load overlaps			_	_	
	Length of base of load prism measured in relation to the direction of travel of the vehicle					
	Perpendicular - HN + HN	L ₁	m	NA	NA	
	Parallel	L ₂	m	0.78	0.66	
	Axle load at top of pipe	W _{q(axle)}	kPa	NA	NA	
	Load factor	q(axie)		1.35	1.35	
	Dual lane load reduction factor			0.90	0.90	
	Dual lane design live load - 2 x HN	Wa	kPa	NA	NA	
26	Axle Loading - HO (HO Alt(b) + HN)	4				
20	Load overlaps			Lane	Lane	
	Length of base of load prism measured in relation to the direction of travel of the vehicle					
	Perpendicular - HO + HN	L ₁	m	6.23	6.11	
	Parallel	L ₂	m	0.98	0.86	
	Unfactored axle load at top of pipe	W _{q(axle)}	kPa	66.04	78.79	
	Stress reduction factor	q(uxio)		1.00	1.00	
	Dual lane load reduction factor			0.90	0.90	
	Dual lane design live load - HO + HN	Wq	kPa	62.96	74.53	
27	Maximum average intensity of design live loads (worse case)	Wa	kPa	62.96	74.53	
	Design Live Load	-				
28	Worst case - single or dual lanes			Single	Single	
29	Single or dual lane used for design			Single	Single	
30	Design live load	Wq	kPa	112.98	152.45	
RESUL	TS					
31	Load Case used			NZTA BRIDGE MANUAL LOAD DISTRIBUTION AND IMPACT FACTOR	NZTA BRIDGE MANUAL LOAD DISTRIBUTION AND IMPACT FACTOR	Typically use AS/NZS 2566.1 case unless pipe is in a State Highway
32	Design Live Load	Wq	kPa	112.98	152.45	

### NZTA Vehicle Loads from the NZTA Bridge Manual

Description	Symbol	Unit
NZTA HN Loading		
Axle spacing	J	m
Axle load	ΣΡ	kN
Wheel load	Р	kN
Contact area parallel to direction of travel	а	m
Contact area perpendicular to direction of travel	b	m
Distance between centre-lines of wheel load	G ₁	m
Spacing between 3 m lanes - Lane gap		m
Distance between centre-lines of wheel load - dual lane	G ₂	m
Load factor		
NZTA HO Loading		
Axle spacing	J	m
Axle load	ΣΡ	kN
Wheel load	Р	kN
Alternative a		
Contact area parallel to direction of travel	а	m
Contact area perpendicular to direction of travel	b	m
Alternative b		
Contact area parallel to direction of travel	а	m
Contact area perpendicular to direction of travel	b	m
Distance between centre-lines of wheel load	G	m
Stress reduction factor 0.75 (=1/1.33) or 1 (see Reference note)		
NZTA Lane Loading		
UDL lane load		kN/m ²
Lane width		m
NZTA Dual Lane Load Reduction Factor		
(Note: not to be applied to HO load element)		

Reference
AS/NZS 3725; NZBM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725 Suppl.; BM Figure 3.1
AS/NZS 3725 Suppl.; BM Figure 3.1
BM 3.2.1
40/NZO 0705, DM 51 mm 0.4
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
<b>.</b>
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
AS/NZS 3725; BM Figure 3.1
BM Table 3.1: 1/1.33 in 1994 TNZ BM; 1.0 in NZTA BM
BM Figure 3.1
BM Figure 3.1
DM 0.04
BM 3.2.4

## **Structural Design of Buried Flexible Pipelines, in accordance with AS/NZS 2566.1.** Based on AS/NZS 2566.1 Supplement examples.

PH         PH<	Item	Description	Symbol	Unit	Shallow cover	Shallow cover	Very shallow cover, moderate in situ strength	Reference to AS/NZS 2566.1	
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <th< td=""><td>PIPE SPE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	PIPE SPE								
3.     Basic (grady     Grad     Grad </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1								
Image: Problem         Part Probl			DN					ased on what Euroflo nine would fit onto existing	nine
S     Bene density     A     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B			DN					ased on what Ediono pipe would in onto existing	pipe
Image: Base density of the second		5 5	Di	m					_
1     Wall biology isomaly     1     0     No.	-			_					
Basis         Basis <t< td=""><td></td><td></td><td>t</td><td>_</td><td></td><td></td><td></td><td></td><td>_</td></t<>			t	_					_
Processor         Instruct frame in regime introgeness outcomes and and a set of the interpole interpole into a set of the interpole interpole into a set of the interpole into a set of the interpole interpole into a set of the interpole interpole into a set of the interpole into a set of the interpole into a set of the interpole interpole into a set of the interpole interpole into a set of the interpole i	-		t.				101	(Clause C2.2.1)	
Moment law is negative law is negative law is an analysis of the law is an anal	9			-	NA	NA	NA		
Interpretaining notional statisticityInterpretaining notional statisticity1Interpretaining notional statist	-		- '	10 [™] m ⁺ /m					
Description ray sensing model of electric (key electric)Fig.	10	Distance from neutral axis to internal surface	C ₂	m	0.016	0.012	0.012	Figure 1.2 (profile wall pipe)	
Barbase of mata aim         Barbase of mata aim <td>11</td> <td>Initial (3-minute) ring-bending modulus of elasticity</td> <td>E_b</td> <td>MPa</td> <td>950</td> <td>950</td> <td>950</td> <td>Table 2.1</td> <td></td>	11	Initial (3-minute) ring-bending modulus of elasticity	E _b	MPa	950	950	950	Table 2.1	
Barbase of mata aim         Barbase of mata aim <td>12</td> <td>Long-term ring bending modulus of elasticity (50-years)</td> <td>Eы</td> <td>MPa</td> <td>260</td> <td>260</td> <td>260</td> <td>Table 2.1</td> <td></td>	12	Long-term ring bending modulus of elasticity (50-years)	Eы	MPa	260	260	260	Table 2.1	
Image: state of provides integrating affints         Sign of the state of th									_
Image and the part of a part of								Eq. 2.2.1.1(1)	
Image         Image         Mate			3 _{DI}	N/m/m					
Image: Section of the sectin of the section of the sectin	15		Spiso	N/m/m	5,815	5,688	5,688	Eq. 2.2.1.1(2)	
Image     Long thm (2 year) nay bending suffices on particing suffices     Solution (2 year) nay bending suffices on particing suffices     Solution (2 year) nay bending sufficience     Solution (2 ye									
11 1Model longem hore parenes points and parenes points an				-				Eq. 2.2.3	
Above box box minimal presume - solubilities over - reading and solubility over and for part of and solubility over and solubilit	17	Long term (2-year) ring-bending stiffness	S _{DL2}	N/m/m	7,548	7,384	7,384		
All performance increases of performance increases in a second secon	18	5 1	$\sigma_{hall}$	MPa	8.0	8.0	8.0	Table 2.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19		Pat	MPa	NA	NA	NA		
UMINE         Normal defacion         Nome         Nome <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
21Moreale biogener groups outside divergener groups outside divergeneration outside divergened divergeneration	-		V	-	0.45	0.45	0.45	Table 2.1	
22     Monate long-handing handing									
2.3         Design factor for solving         C         2.5         2.6         2.5         2.6         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5 <th2.5< th=""> <th2.5< th=""> <th2.5< th=""></th2.5<></th2.5<></th2.5<>		-	Δ _{yall} /D	-					
A a Inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumentant inclumenta	22	Allowable long-term ring bending strain	ε _{ball}	-	4.0%			Table 2.1	
indjørn instruid pressure         i			Fs	-	2.5	2.5	2.5	Clause 5.4	
i-long-term mig banding strain         inp         inp<         inp< </td <td>24</td> <td>Factor of safety for</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24	Factor of safety for							
Image: monitoned banding		- long-term internal pressure	η _p	-	1.25	1.25	1.25	Table 2.1	
SITE CONDITIONS     Inc.     I		- long-term ring bending strain	η _b	-	2.00	2.00	2.00	Table 2.1	
25CoverCoverCover0.00.60.5IndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndex <td></td> <td></td> <td>η</td> <td>-</td> <td>1.25</td> <td>1.25</td> <td>1.25</td> <td>Table 2.1</td> <td></td>			η	-	1.25	1.25	1.25	Table 2.1	
Notive soilNotive so									
classification         classification         classification         Table 3.2         Classification         Table 3.2         Classification         Class			Н	m	0.6	0.6	0.5		
Standard pendration testIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncIncInc </td <td>26</td> <td></td> <td></td> <td></td> <td></td> <td>СН МН</td> <td></td> <td>Table 3.2</td> <td></td>	26					СН МН		Table 3.2	
soling         soling         Soling         3.0         3.0         3.0         Table 3.2         Image           soling					-	-	-	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			E'.	_	3.0	3.0	3.0		_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27		- 1		0.0	0.0		14010 012	
density index (estimate field compaction)         interplay (signing cestimate field compaction)         Table 3.2         Interplay (signing cestimate field compaction)         Interplay (signing cestimate field cestimate fiel		- classification		-	SP	SP	SP	Table 3.2	_
old modulesold modulesImage: Section of the spin spin spin spin spin of the spin spin spin spin spin spin spin spin		- density index (estimated field compaction)	I _D	%	95		95	Table 3.2	
28       Width of trench at the spingline       B       m       1.20       1.10       1.10       1.10       Figure 3.1         29       Height of water surface above top of pipe $H_u$ m       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0				MPa					_
29Height of water surface above top of pipe $H_{u}$ $m_{u}$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$	28		-						
30Internal working pressure $P_w$ $MP_a$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>									_
31Internal vacuumq, $q$ kPa000000032Unit weight of trench fillYkNm ³ 202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020 <t< td=""><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	-			-					
32 33Unit weight of trench fillV V webkN/m³202020Clause 4.3, Paragraph C4.2.2133Buoyant unit weight of trench fillVaubKN/m³12.4612.4612.4612.4612.4666634Specific gravity of soll particles (blank if unknown) $P_{ab}$ $P_{ab}$ $P_{ab}$ 12.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.4612.46 <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-			-					
33Buoyant unit weight of trench fillWum $V_{wab}$ kN/m ³ 12.4612.4612.4612.4612.46E.E.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111			-		-		-	Clours 4.2 Deceration C4.2.2	
34Specific gravity of soil particles (blank if unknown) $p_s$ $                                                                                                                                                                 -$ <t< td=""><td></td><td></td><td>- ·</td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>			- ·	-					
DESIGN DEAD LOAD AND LIVE LOADS DETERMINATIONImage: constraint of the system of deal backsImage: constraint of the system of the system of deal backsImage: constraint of the system of the sy				kN/m°	12.46	12.46	12.40	Eq. 5.4(2)	
35Design load due to external dead loads $w_g$ $kP_a$ 12.0012.0010.00 $Eq. 4.3$			ρs	-					_
36Design load due to superimposed dead loadswggskPaLLClause 4.0Clause 4.6Clause 4.6Cla									
37Live load / average intensity of design live loads $w_q$ $kP_a$ 112.98112.98160.68Equation 4.7.2(1) or Figure 4.1 $resting 1000000000000000000000000000000000000$		·	Wg	-	12.00	12.00	10.00		
$\begin{array}{ c c c c c c } \hline \textbf{DETERMINE EFFECTIVE SOIL MODULUS} & \textbf{I} &$	36	Design load due to superimposed dead loads	Wgs	kPa				Clause 4.6	
$38$ $E_{\nu}E_{n}^{\prime}$ $c$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ $3.33$ <th< td=""><td>37</td><td>Live load / average intensity of design live loads</td><td>Wq</td><td>kPa</td><td>112.98</td><td>112.98</td><td>160.68</td><td>Equation 4.7.2(1) or Figure 4.1</td><td></td></th<>	37	Live load / average intensity of design live loads	Wq	kPa	112.98	112.98	160.68	Equation 4.7.2(1) or Figure 4.1	
39 $B/D_e$ $-1.92$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$	DETERMI	NE EFFECTIVE SOIL MODULUS							
39 $B/D_e$ $-1.92$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$ $2.21$				-	3.33	3.33	3.33		
40Design Factor $\Delta_r$ $-$ 0.590.720.72Equation 3.4.3(3) $-$ 41Leonhardt correction factor $\zeta$ $-$ 0.420.460.46Equation 3.4.3(2); Figure 3.2 $-$ 42Effective soil modulusE'MPa4.204.604.60Equation 3.4.3(1) $-$ CHOOSE UNG TERM DESIGN BASIS43Long-term design basis $                                                                                                                         -$ <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>				-					
41Leonhardt correction factor $ζ$ -0.420.460.46Equation 3.4.3(2); Figure 3.242Effective soil modulusE'MPa4.204.604.60Equation 3.4.3(2); Figure 3.2CHOOSE UNG TERM DESIGN BASISE'MPa4.204.604.60Equation 3.4.3(1)E43Long-term design basisE'years505050Clause 5.1.2 and C2.2.2E44Long-term ring-bending stiffness (either S _{DL2} or S _{DL50} )S _{DL} N/m/m5,8155,6885,688Equation 2.2.3E45Predicted long-term vertical deflectionΔy/D-4.13%3.83%5.23%Equation 5.2(2)E			Δ					Equation 3.4.3(3)	
42Effective soil modulusE'MPa4.204.604.604.60Equation 3.4.3(1)ICHOOSE UNG TERM DESIGN BASISCong-term design basisCong-term design basisCong-term design basisCong-term design basisClause 5.1.2 and C2.2.2Clause 5.1.2 and C2.2.243Long-term ring-bending stiffness (either S _{DL2} or S _{DL50} )S _{DL} N/m/m5,8155,6885,688Equation 2.2.3Clause 5.1.2 and C2.2.244Long-term ring-bending stiffness (either S _{DL2} or S _{DL50} )S _{DL} N/m/m5,8155,6885,688Equation 2.2.3Clause 5.1.2 and C2.2.245Predicted long-term vertical deflectionΔy/D-4.13%3.83%5.23%Equation 5.2(2)Clause 5.1.2 and C2.2.2		5	<u>۲</u>	-					
CHOOSE LONG TERM DESIGN BASIS       Image: Choose Long term design basis			E'	MPa					
43Long-term design basisClause 5.1.2 and C2.2.2Clause 5.1.2 and C2.2.244Long-term ring-bending stiffness (either S _{DL2} or S _{DL50} ) $S_{DL}$ N/m/m5,8155,6885,688Equation 2.2.3 $rest = 10^{-10}$ DETERMINE DEFLECTION45Predicted long-term vertical deflection $\Delta y/D$ -4.13%3.83%5.23%Equation 5.2(2) $rest = 10^{-10}$									
44         Long-term ring-bending stiffness (either S _{DL2} or S _{DL50} )         S _{DL} N/m/m         5,815         5,688         5,688         Equation 2.2.3         Equation 2.2.3           DETERMIVE DEFLECTION                                                                                                       <				years	50	50	50	Clause 5.1.2 and C2.2.2	
DETERMINE DEFLECTION         Deflection         Δy/D         4.13%         3.83%         5.23%         Equation 5.2(2)			Sni						
45         Predicted long-term vertical deflection         Δy/D         -         4.13%         3.83%         5.23%         Equation 5.2(2)						.,			
			A (D		4.40%	0.00%	- 00%		
	45	Predicted long-term vertical deflection	(\v/L)	-	4.1.3%	3.83%	5.23%	Equation 5 2(2)	

Notes
Leave blank if no cement mortar lining
Shows an error if no data in cell below Obtain relevant values from manufacturer
Value not provided by manufacturer, 1/3 of profile height used
Supplier supplied or leave blank
Supplier supplied or leave blank
Supplier supplied or leave blank
From manufacturer
From hydraulics spreadsheet (Height diff column + pipe diameter)
Text value not used in calculation
Text value not used in calculation No reliable modulus values for these materials (Table 3.2)
Text value not used in calculation
Text value not used in calculation
Assuming no ground water
For drainage pipes $P_w = 0$
This should be zero for gravity pipes
If unknown leave blank
Calculate with Live Load Calculation Sheet
Do not use 50 years by default
Do not use 50 years by default

## **Structural Design of Buried Flexible Pipelines, in accordance with AS/NZS 2566.1.** Based on AS/NZS 2566.1 Supplement examples.

ltem	Description	Symbol	Unit				Reference to AS/NZS 2566.1	
nem	Description	Symbol	Onit	Shallow cover	Shallow cover	Very shallow cover, moderate in situ strength	Reference to AS/N25 2500.1	
DETERMI	NE STRAIN							
47	Shape factor	D _f	-	3.54	3.60	3.60	Equation 5.3.1(3)	
48	Effective wall thickness of pipe	t _{es}	m	0.061	0.046	0.046	Clause 1.5	
49	Predicted long-term ring-bending strain	ε _b	-	1.58%	1.40%	1.92%	Equation 5.3.1(2)	
50		Therefore strain is		Ok	Ok	Ok		
DETERMI	NE EFFECTS OF EXTERNAL LOADING INCLUDING HYDROSTATIC PRESSURE AN	ND INTERNAL VA	CUUM					
51	Buckling pressure on pipe for -							
	Unit weight of external liquid	YL	kN/m ³	10	10	10	Section 1.5	
	$H \ge H_w$		kPa	132.01	130.57	176.26	Equation 5.4(1) (see note below)	
	H < H _w		kPa	NA	NA	NA	Equation 5.4(1) (see note below)	
52	Allowable buckling pressure (see Item 23) -							
	H < 0.5 m	q _{all1}	kPa	NA	NA	NA	Equation 5.4(4)	
	H ≥ 0.5 m	q _{all1}	kPa	70.00	68.47	68.47	Equation 5.4(4)	
		q _{all2}	kPa	187.21	197.62	197.62	Equation 5.4(5)	Note:exa
		Max $q_{all1}$ or $q_{all2}$	kPa	187.21	197.62	197.62	Equation 5.4(4) or 5.4(5)	

Notes
xample in AS/NZS 2566.1 Supp uses $S_{\text{DL}}$ rather than $S_{\text{DI}}$ which is why this fi

## **Structural Design of Buried Flexible Pipelines, in accordance with AS/NZS 2566.1.** Based on AS/NZS 2566.1 Supplement examples.

Item	Description	Symbol	Unit				Reference to AS/NZS 2566.1	
ntern	Description	Symbol	Shallow cov		Shallow cover	Very shallow cover, moderate in situ strength	Reference to AS/NZS 2500.1	
53	The	erefore buckling is	i	Ok	Ok	Ok		
	NOTE: Where the possibility of concurrent application of live load and vacuum is unlikely, the	e lesser of the terms	$s w_q$ and $q_v$				Clause 5.4	
	may be omitted from Equations 5.4(1) and 5.4(3). This has been done here.						Clause 5.4	
	NOTE: q _v should be considered only when critical. Where q _v is included, S _{DL} in the Equation	5.4 should be repla	ced by					
	short-term stiffness S _{DI} . This has been done here by use of an IF statement to determine if q _v critical.							
DETERMI	NE EFFECTS OF COMBINED LOADING							
54	Re-rounding coefficient (P _w < 3.0 MPa)	r _c	-	NA	NA	NA	Equation 5.3.3	
55	$P_w / \eta_p P_{all}$		m	NA	NA	NA	Equation 5.3.3	
56	$r_{c} \epsilon_{b} / \eta_{b} \epsilon_{ball}$		-	NA	NA	NA	Equation 5.3.3	
57	Addition of above two items		-	NA	NA	NA	Equation 5.3.3	
58	Therefore co	mbined loading is	;	NA	NA	NA		

Notes